2nd International Advisory Committee of J-PARC March 10,11, 2003

Material & Life Science Experimental Facility (MLF) Progress report since March 2002

Yujiro Ikeda JAERI

- MLF component design and construction with emphasis of JSNS*
- Report of 1MW Neutron Source Technical Advisory Committee
- Mercury target pitting problem and R&D

* The framework of development neutron beam line will be reported by Prof. Fujii

MLF Mission

is to construct a user experimental facility aiming at new scientific breakthrough with pulsed neutrons and muons in material&life sciences, fundamental physics, industrial applications, etc.

MLF Parameters

1MW proton beam power (3GeV, 0.33 mA, 25Hz, 1µs pulse width) Hg Spallation neutron target (1MW, Flowing mercury, 1 m/s) Carbon muon production target (60 kW, Edge cooling with Cu support ring) Long Proton Beam Transport Line (340 m long from 3GeV RCS ring extraction) 125m x 70 m x 30 m Large Building (Two sided experimental halls 130 ton central crane,50 ton and 30 ton

cranes for experimental halls)

Layout of instrument suits

Looking back over the past one year

The 1st IAC	March 2002
Structural components design specification	Apr. ~ Aug. 2002
23 beam extraction was determined	May. 2002
Tenders for the first bids & awards,	Nov. 02~ Mar. 03
N-TAC	October 28~30, 2002,
10 neutron instrument project team proposals	
submitted to a committee as LOIs	Sept.12~Dec. 6, 2002

Mercury pitting issues (Target technology)

International Spallation Target WorkshopJuly, 2002Specialist Meeting at SNS/ORNLOctober, 2002High Power Target technology CollaborationJanuary 2003

Detail design is on going for tender of the 2nd bids

Jun.~ Sept., 2003.

Budget Profile and Major Milestone

Mercury Target

Target Cart and Handling

The bit of the target cart will be awarded to a vender next week. One of the most strong N-TAC comments is to establish more realistic remote handling scenario. According to detailed dose mapping, maintenance requirements

should be identified one by one. We have started actions.

Cable-veyors type is adopted for connection fo piping

Moderator

• Structure

- detailed design has almost been completed.
- two canteen-type decoupled moderators (poisoned & un-poisoned) and one cylindrical coupled moderator.
- He-barrier layer at extraction window.
- moderator wall thickness determination is in progress taking account of:
 - Design hydrogen pressure 2.0 MPa
 - Proof pressure testing by applying 4 times of the design pressure
- Hydrogen flow
 - Parallel hydrogen flow in all the three moderators were confirmed.
 - Maximum hydrogen temperature is well below 30 K.
- Neutron absorbing materials
 - Ag-In-Cd (AIC) decoupler for higher Ed (1 eV)
 - HIP testing for binding Al-alloy & AIC.
 - Cd poison for higher Ecut (0.4 eV)
 - Cd-Poison plate at an asymmetrical position
- Tender start: June 2003

Reflector

Reflector

- Be inner, Steel outer
- Three one-path cooling channel (top, middle and bottom)
- Mechanical strength design
 - Water pressure: 0.5 MPa
 - Max. deformation: 1 mm
- Adequate water flow for heat removal Detailed thermo-hydraulic analysis for final design is in progress.
- Reflector plug
 - The previous polygonal shape was changed to <u>cylindrical one</u> for easy manufacturing & maintenance.
- Contract: December 2002

Remote Handling for Moderator & Reflector

 Remote handling scenario has been established. Contract: December 2002

Elevation View of Target Station

Target Station Shielding/Shutter/Helium Vessel

<u>23</u> beam lines with independent shutters Minimum angular interval of 6.7 °

Neutron Shutter and Proton Beam Window

Neutron-Beam-Line Shield

- A part of neutron-beam-line shield has been in tendering for award.
 - Just outside of the biological shield made of magnetite concrete, and up to 12 m from the source center.
 - 4,000 mm height from the floor level
 - Beam-line heights: 1,437 & 1,758 mm
 - A 1,000 mm wide & 2,000 mm height tunnel for each beam line
 - Choppers, guide tubes, beam ducts, shield: to be installed
 - Basically steel, and a layer of ordinary concrete of 200 mm
 - 4,400 ton

Cryogenic System of Cold Moderators

Cryogenic system conceptual design has been completed to satisfy the cryogenic moderator design requirements. And followings were achieved.

- Flow diagram design
- Conceptual specifications for the main components
- Process flow diagram
- Pressure behavior analysis when applying disturbance

Issues to be perform

- Detail specification and cost estimation (Almost finished)
- Study and analysis of safety issues (on going)

Conceptual Flow Diagram

Process Design at the Rated Condition

Completion of process design

- ✓ Satisfaction of design requirements
- ✓ Optimization of process design

Reference heat loads

Moderator	Vessel	1896W			
nuclear heating	Hydrogen	1855W			
Heat load of ci	466W				
Heat load of hyd	254W				
Heat load of trai	575W*				
Total	5046W				

*: The design review could reduce the heat load of 420W.

3 GeV proton beam-line and beam dump

- Final adjustment of beam optics at just after the 3GeV extraction point is underway.
- Parts of magnets and power supplies are under procurements. Design of the beam dump is in progress for manufacturing

Conventional facility design

Radiation Safety Design

Application to the local governments (Ibaraki prefecture and Tokai village) is underway. They will permit construction of MLF facility soon.

Project-team Instrument Proposal

- 1. Conceptual Design of Day-one Instruments
- 2. Evaluate requirements for

Moderators (Ed 1eV, poisoning depth), Utilities & Facility Instrument components (Detector, Mirror etc.)

Instruments arrangements to evaluate required beam ports(number and separation) and requirement on engineering design of target station including moderator structure, etc.
 --->23 beam port were established.

1999-2000 Instruments Discussion Group :40 instruments proposed
2000-2002 Instrument Project Team was established
Pre-selection of instruments to proceed to a concrete design of neutron target station (Beam hole, viewing moderator etc.)

Project-team Proposed 10 day-one instruments from a view Point of that <u>Whole Q-E space should be covered by</u> <u>instrument suits so that various science can be applied.</u>

Device development

- I. Detector development
 - Grid-type micro-strip gas-counter (MSGC),
 - ASIC development
 - 0.6mm positional resolution,
 - Charge integration method: 10⁸-10⁹ cps/s/mm²
 - Micro-Pin type gas-counter
 - Development just started.
 - WLSF scintillation detector
 - 0.4mm positional resolution
 - Direct-coupling scintillation detector with multi-anode PMT
 - Development just started.

MSGC: 0.6mm resolution (Takahashi)

Device Development - continued

- II. Optics
 - Pulsed-sextupole magnet development for TOF SANS
 - Ion polishing for high-reflectivity
 - 5 Qc mirror
- III. He-3 Polarizing filter
- IV. Spin-flip chopper, Drabkin energyfilter

Triple SFC, S/N ratio 1.6 x 10⁵

He-3 polarization: $T_1 = 183$ hrs

N-TAC Report

1MW Pulse Spallation Neutron Source Technical Advisory Committee (N-TAC) Date: October 28-30, 2002

@Japan Atomic Energy Research Institute, Tokai Research Establishment

- Organization:
 - under the International Advisory Committee (IAC) of the High Intensity Proton Accelerator Project (J-PARC)
- **Organizer:** Project Director, Prof. Shoji. Nagamiya

Objectives and introductory guidance for

The project recognizes indispensable merits to have a technical review of the design by professional scientists comprising international specialists world wide, giving critical advice on how to meet the goal for the completion of the 1MW pulse spallation neutron source, JSNS:

in terms of overall performance, technical soundness, timeframe, budgetary rationality, and other important points.

The N-TAC Committee members:

Dr. Günter S. BAUER (Chair)	ESS, Forschungszentrum Juelich GmbH, Germany
Dr. Timothy A. BROOME	ISIS, Rutherford Appleton Laboratory UK
Dr. John M. CARPENTER	Argonne National Laboratory USA
Dr. Hajo HEYCK	SINQ, Paul Scherrer Institute CH
Prof. Hiroaki KURISHITA	Tohoku University, Japan
Dr. Thomas J. MCMANAMY	SNS Project Oak Ridge, USA

Executive Summary and Main Recommendations

N-TAC Report

- The Committee was impressed by the amount and quality of work done by the Project Team since Phase 1 of the J-PARC project was approved and by the well thought through overall concept of this endeavour of highest scientific importance.
- Continue active participation in the *International Collaboration on High Power Target Development* with the goal to find a method to mitigate pressure wave build-up in liquid metal targets under pulsed operating conditions.
- Carefully reassess the benefits of a cross flow configuration with a permanently fixed outer shroud for the mercury target system in terms of; technical and manufacturing complexity overall cost and handling flexibility to incorporate a pressure pulse mitigation system.

Reassess the required size of the ortho-para hydrogen converter by confirming the anticipated conversion rate in the moderators. --> less than 1/2 in total H2 inventory

Executive Summary and Main Recommendations-2

- Re-examine the purpose and specifications of the proton beam dump (currently 4kW)to ensure efficient accelerator commissioning and development without relying too heavily on the mercury target being in service.
- Consider making available at least limited funds for instrument planning at the present point in time to fund a few full time scientists for this task. This is important to guarantee that instrumentation needs get sufficient attention in the planning process and the needs of the instruments are fully taken into account in the design of the target station.
 - Develop procedures and make suitable provisions for recovery from abnormal operating conditions and equipment failure and for post mortem and after service examination of components in order to improve continuously the system performance and availability. All documentation should take this into account.

The Committee noted in particular:

- The design presented for the (now) JPARC 1MW Spallation Source is generally well developed with good technical solutions for all major target station requirements and appears technically feasible.
- In accordance with a growing importance of long wavelength neutrons, emphasis has been placed on cold neutron performance. Along these lines innovative features for moderator design have been developed which hold a promise for significant improvements of long wavelength neutron performance.
- Well developed neutronic shielding analysis has led to cost optimisation by reducing the amount of machined steel shielding required in the monolith.
- The design presentations focused on normal operations with little discussion of the design requirements for off-normal events or the level of quality assurance required for the equivalent of safety significant or safety class systems.

In general, the review material presented did not permit an evaluation of design features for off-normal events or accidents.

This may have far reaching consequences as experience shows that the design is often significantly influenced by the requirements for containing and recovering from such events. This should be a prominent subject in future reviews.

N-TAC Report

Schedule and integration

- The schedule for the whole project is extremely ambitious. It is the understanding of the Committee that this is dictated in part by a funding profile which is beyond the Project's control. This affects the procurement sequence and requires difficult decisions to be made at a very early point, making sure that there remains enough flexibility to adjust to arising needs.
- The Committee anticipates problems to arise if deliveries come in at times when the site is not ready for the installation of the components.
- Significant amounts of space must be provided for receiving, acceptance testing and storage of parts and components.
- Simultaneous construction activities on all project units in a rather limited space will require special measures and tight organisation.
- It is particularly important to ensure adequate testing time and provisions to demonstrate remote handling systems.

Mercury Spallation Target Issue

Pitting damage and erosion on a Hg target container inner surface induced by high power pulse injection.

It has been recognized a serious problem for assurance of the target lifetime. Since the first observation of the pitting by SHPB test at JAERI,

studies have been extensively carried out both with on- and off-line impact test by SNS and JSNS project teams, respectively:

LANSCE/WNR using proton pulse

MIMTM high cycle offline test.

<u>Magnetic IMpact Testing Machine(M I M T M)</u> to estimate high cycle pitting damage up to 10 million

What we have known so far from Off-line tests

- 1) Kolsterising (Hardening surface treatment) is effective for reducing pitting damage.
- 2) Understandings: the damage is characterized by two steps, an incubation period and steady increase of mass loss with the number of cycles to approximately the 1.27 power.
- 3) Three phases of pitting damage could be categorized in terms of the number of loading cycles (for 316SS):

Phase 1(<10⁴): Individual pits Phase 2(10⁵ to 10⁶): Pits combine and over lapped.

Phase 3(>10⁶): Homogeneous

erosion with mass loss begins

Comparison of pitting damage erosion of SS316 before and after surface hardening

It is clearly observed that the pitting damage is suppressed by the hadning

We have set up further R&D programs on pitting issues in mercury target for design continuation consistently.

Ttores a	P	Caladal	
Ilems	A	Schean	Ľ

<u>Items</u> o													
		2002 MF	Y:5, 20MYen		2003	MP	Y:5,	25	IYen				
	ltems	Apparatus	Collabo.		200)3			200	04		2005	2006
		Apparatae		1/4	2/4	3/4	4/4	1/4	2/4	3/4	4/4	2000	2000
	Data up to 2E8	МІМТМ	Private co.					I			-~		
	Hardening & Coating		SNS, ESS					1			~		
Off-line test	Pressurised Hg	мімтм					\rightarrow						
	Stressed specimens	МІМТМ					\Rightarrow						
	Monitering system	MIMTM	Tohoku Univ.						\supset				
	Fatigue (Hg,Pitting)	New Machine MIMTM											
	Flowing Hg effect	Hg-LOOP	ESS										
	Mitigation system												
	Data up to E5		SNS, ESS										
On hear test	Mitigation		ESS, SNS										
Un beam test	Hardening & Coatings		SNS, ESS										
	Monitering system												
Simulation	Dynamic response		Tokyo Univ.				-			1			$\langle \rangle$
	Cavitation intensity						+						
	[[esign							┛ ↓,	↓			
Hg-Target	Trial	fabrication											
	Fab	rication											
	Inst	tallation											

We are in a high time:

Bids of structural components have been awarded by multiple venders. As components are mutually intricate structures, a stringent coordination and precise adjustments are essential.

In addition, even more critical accordance with the conventional facility building construction is required in a limited timeframe.

Designs of the mercury target system and the supercritical hydrogen cold moderator/cryogenic system are going to be finalized and almost all line items are to be submitted to tenders for bids.

Very close to the No Return Point.