29 Oct. 2002 NTAC at JAERI

V-07-Kiyanagi

Solid Backup Target

Y. Kiyanagi & Solid target group

Contents

- Target materials
- Target type and neutronics
- Heat deposition and afterheat
- Conclusion

Target materials (1)

Realistic candidates are Ta and W.

(Ta)

- High ductility after high level irradiation
- Low thermal conductivity
- Large thermal stress
- Thin plate or rod (Large coolant content)
- Bad neutronic performance
- High after heat (Fatal defect around 1 MW)

Target materials (2)

(W)

- High thermal conductivity
- Low thermal stress
- Thick plate or rod (Low coolant content)
- Good neutronic performance
- Low after heat
- High DBTT (High yield strength)
- Erosion by high speed water (above 5 m/sec) and under high radiation field

W with a thin cladding or in a sheath would be the unique candidate around 1 MW

Target type and Neutronics

1. Plate target

- Higher nucleus density compared with a rod target. Cladding is required.
- Ta cladding was already performed at KENS and ISIS.

2. Rod target

Lower nucleus density SUS or Zircaloy sheath

Structure of A Plate Target

Decoupled moderators

Arrangement around A Plate Target

Plate thickness and cooling condition

Plate number	Thickness(mm)	Plate number	Thickness(mm)
1	6.3	15	10.2
2	6.7	16	11.0
3	6.4	17	11.8
4	6.3	18	12.7
5	6.3	19	13.8
6	6.4	20	15.0
7	6.5	21	16.5
8	6.7	22	18.3
9	7.0	23	20.5
10	7.3	24	23.3
11	7.7	25	26.7
12	8.2	26	31.2
13	8.8	27	37.3
14	9.4		

Thickness of each tungsten plate

Conditions

Accelerator power 1MW Coolant speed 10m/s Pressure of coolant 10atm

Distance between plates: 1.5mm Temperature of wall: less than 120 Maximum temperature: less than 200 Thermal stress: less than 200MPa

Ta cladding: 0.5mm

Plate Target

Neutron Intensity Relative to The Mercury Target

Optimum condition of the solid target

- •Target height is 8cm
- •Target width is 20cm
- ·Coolant plenum width is 5cm

	Coupled	Decoupled	Poisoned
0-5meV	1.08	1.09	1.11
5meV-25	1.07	1.11	1.10
25meV-100	1.03	1.12	1.08
100meV-500	1.04	1.10	1.13

The solid plate target gives a little bit higher intensity than the mercury.

Rod Diameter as A Function of Accelerator Power

Arrangement around The Rod Target

Rod Target

Neutron Intensity Relative to The Mercury Target

Target condition of the rod target

Rod diameter:	13 mm
Distance between rods:	0.5mm
Sheath material:	Та
Accelerator power:	1 MW

	Coupled	Decoupled	Poisoned
0-5meV	0.99	0.97	1.04
5meV-25	0.98	0.96	1.09
25meV-100	0.92	1.02	1.04
100meV-500	0.96	0.91	1.10

The rod target gives almost the same neutron intensity as the mercury target. (The Zircaloy sheath gave very little difference.)

Decay Heat Density Just after 1 Year Irradiation at 1 MW

Thickness of Ta clad is 0.5 mm

Total heat deposition is 7,580 W. W:3,970 W, Ta:3,610 W Heat deposition in Ta is too large. So, we assumed a SUS cladding.

Time Dependence of The After Heat of The First Plate

After heat from Ta cladding is dominant beyond 1 day and decreases very slowly.

The after heat from Ta is very large. So the W with Ta is not realistic. A rod target with SUS or Zircaloy sheath will be feasible.

Conclusion

- W plate with Ta cladding is not acceptable because of the high heat deposition and of the slow decay of the after heat.
- W rod target in a SUS or Zircaloy sheath is most feasible. After heat becomes the level much less than the ISIS Ta target after 1 week cooling, ~0.5 kW.
- Neutronic performance of the solid target is almost the same as that of the mercury.
- Plenum for gases produced in the target is required but it is not so large. (See appendix)

(Issues for the rod target)

- 1. Life of Zircaloy due to hydride formation should be evaluated by the experience at PSI.
- 2. Technical experience should be required for the SUS sheath.

Appendix: Pressure concerning to the sheath

P: Inner pressureτ: tensile stress of sheathfpw: volume rate of plenum

Assumption: 0.42% hydrogen production at 10 dpa. (Malloy et al.)