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Technical issuesin target design

m Pressure wave.(Especially, EOS of mercury and FSI*)
* Fluid-Structure-Interaction.
m Thermal stress.(Presented by Dr. Hino)

m Generation of negative pressure in mercury and cavitation.
O O

m Damage of target container by cavitation erosion.

m Material damage because of proton irradiation.



Structural design of target container
under pressure wave

( cavitation is not considered )



Structural concept of liquid
mercury target
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Distribution of heat deposition in mercury tar get
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Temperature rise distribution by heat generation
and formation of compression field

Generation of pressure wave in mercury and load on
target container.d0 0.91MW/25Hz[]

Injection of pulsed proton beam(1ps) :
36.4 kJ/pulse.

-

skt~ Heat generation by nuclear spallation :
Beam Q O 20 kJ/pulse.

‘ Max. heat density : g 0 26.7 J/cc/pulse.

A%

Max. temperature rise : AT =q /pC,,00 17 O /pulse

-

Max. compressed press. : P =a A T K [ 68MPa

-

Sound velocity in mercury : V 1 1400 m/s

-

Load on target container.

-

Tima: 2.93052-007 (2 of 1Z]

Structural integrity of the target container?



Stress evaluation of beam window

Code LS-DYNA Vr 950

Analytical model  Number of elements
Vessdl: Shell eement 5.16x 104

[71/4moddl // Hg: Solidelement  66.3x 104

Brade
t10mm

50.47cm 1/4model

| -
8.5cm <"i'l Eu

Proton beam



Effect of beam window type on
mechanical strength

Flat-plate type

Liquid or gas

| nner container

Outer container

Semi-cylindrical type

Liquid or gas
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Dynamic responses of stress at center of window
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Stress amplitude generated in Flat-plate-typeis smaller
—> advantageous for fatigue strength.

Membrane stress intensity generated in Flat-plate-type is smaller
—> advantageous for instantaneous brake.




Comparison of changesin stress/pressure/displacement
at window and upper plate.

Stresses in center of window Stressesin upper plate
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Stress category and allowable stresses
Same as SNS

Normal Service Stress Intensity Limits (SNS)
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Maximum stress ranges(2Salt) at main parts of target container by

pressure wave
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Conclusions by pressure wave analyses

o Structural integrity of the flat-plate type beam window
of 316(LN)SS is secured against the pressure wave load
which generated 1MW proton beam condition.



Analytical evaluation of cavitation erosion

1. Single bubble behavior under pressure change in mercury.
2. Evaluation of shock wave and micro-jet when bubble collapses.

3. Evaluation of the damage of the window wall by Liquid-Solid
Interaction analyses.



Generation mechanism of cavitation erosion

1. Due to Shock wave
The shock wave generated by rebound following gas bubble shrinkage collides with the
solid surface (P, ~Gpa).

2. Due to micro-jet
Bubble collapses toward the wall, and liquid collide with the solid wall as a micro-jet
~200m/s, P,~GPa

Concept of shock wave generation Concept of micro-jet generation

Solid wall

Micro-jet — >~ Solidwall

S - i ol ¢ wien i il —

V=130m/s -> 193MPa(Water)



Relative radius , R(t)/Ro

Single bubble behavior in mercury
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(Bubbles were excited by sine-wave of

10MPa-9kHz. ) The collapse speed of the
bubble influences the micro-jet
velocity in mercury.



Relationship between collision speed and impact pressure when
micro- jet collides with solid wall
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Preliminary analyses of pit formation
by collision of mercury micro-jet with e
solid wallO by AUTODYNO

Range of forecast collision speed of water
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Category to evaluate damage by cavitation erosion.

Generation of Pit

* LEFM: Linear Elastic Fracture Mechanics

Progress
v
L ocal progress D T ITTTIITT T
Pit dian]./Depth
v _
Steady state Transient
by beam trip

v

High compressive
thermal stress

v

No crack propagation

v

L ow thermal stress

Evaluation by LEFM*
Crack growth rate

Estimation of fatiguelife

v

Uniform progress
Window thickness decr eases

|

Acceler ation examination

!

Stress evaluation for
decr eased window thickness

v

Evaluation of structural integrity




Concept of crack generated around pit

*The bottom of pit isV-notch shape, so it was assumed initial crack. The crack is
considered propagating due to alternative pressure wave load. However, structural
Integrity is secured if the crack does not propagate to the limit crack length.

*High compressive stress field is generated on the inner surface of the flat-plate-type
beam window due to the steady state thermal stress.

Therefore, inner surface of the beam window does not become tensile stress field
even if the stress by the pressure wave load. The crack generated around pit does
not propagate.

*Although the tensile stress would be generated due to beam trip (because the
thermal stress decreases), a frequency of thistensile stress generation istoo low to
affect the cavitation erosion damage.



Future work
1. Experiment work
It is necessary to repeat experiment more than 102 cycles under practical operation
condition as possible (purity of mercury, stressfield, and flow condition).
- to measure the profile of damage, especially depth of pit
- to clarify the damage growth behavior (doesit stop or progress?) .

2. Analytical work
It is necessary for pressure wave analyses to consider the EOS of the mercury when
the cavitation occurs, because mercury would become the bubbly-liquid state.
—> The bubble-dynamics code is being devel oped.

It is necessary to analyze the shock wave and the micro-jet behavior near the
structure wall which cause erosion
- to clarify the mechanism of cavitation erosion
- to supplement the experimental result.
- The analysesis being carried out by an existing Euler-Lagrange impact code
(preliminary).



Analytical item necessary for target impact analysis and evaluating cavitation damage.

Analytical item Analytical content Analytical code | Note and necessary data
Fluid-Structure interaction analysis which uses nonlinear | AUTODYN Nonlinear EOS of
Interaction of bubbly-liquid| EOS of Hg which considers dynamic response of bubbly-| DYTRAN bubbly-Hg.
and container liquid. RADIOSS Direct coupling of
The macro behavior of the bubbly-liquid is simulated. Etc. bubbly-liquid equations.
, o - FLUENT , ,
When bubble collapses Formation of micro jet when bubble collapsesin mercury. FROW-3D Isit possible because of
Formation of micro jet Stagnant and flowing condition Etc. the potential flow?
Nonlinear EOS of
Elasto-Plastic interaction with solid wall by micro jet ’Sﬂ%ﬁ N bubbly-Hg.
when bubble collapsesin mercury. RADIOSS Strain rate hardening.
de/dt = 107
When bubble collapses Elasto-Plastic interaction with solid wall by shock wave | . :
) g itto Ditto
Formation of shock wave. | when bubble collapsesin mercury.
The pit progressis evaluated by the condition of the The isa .
Evaluation of pit progress. | design analysis result (negative pressure) based on the ggp/t%/nfotrhe P_rocess_, of pit progress
: ping Pit profile.
experimental data. code.
Fatigue damage evaluation by which irradiation Thereisa
. o hardening to load cyclesin target operation life. necessity for Irradiation effect at crack
Evaluation of fatigue life. :
J Fracture mechanics eval uation by which “Pit+Crack” is ggég' opingthe | growth rate

assumed.
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