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Technical issues in target designTechnical issues in target design

■ Pressure wave.(Especially, EOS of mercury and FSI*)
* Fluid-Structure-Interaction.

■ Thermal stress.(Presented by Dr. Hino)

■ Generation of negative pressure in mercury and cavitation.
　　
■ Damage of target container by cavitation erosion.

■ Material damage because of proton irradiation.



Structural design of target container 
under pressure wave

( cavitation is not considered )



Structural concept of liquid Structural concept of liquid 
mercury targetmercury target
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Distribution of heat deposition in mercury target

Z

3GeV
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Analytical code:NMTC/JAM
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Temperature rise distribution by heat generation Temperature rise distribution by heat generation 
and formation of compression fieldand formation of compression field

Generation of pressure wave in mercury and load on 
target container.（ 0.91MW/25Hz）

Injection of pulsed proton beam(1µs) :
36.4 kJ/pulse.

Heat generation by nuclear spallation : 
Q ～ 20 kJ/pulse.

Max. heat density : q
　
～ 26.7 J/cc/pulse.

Max. temperature rise : ΔT
　
=q
　
/ρ CV ～ 17 ℃/pulse

Max. compressed press. : P
　
= α ΔT

　
KS ～ 68MPa

Sound velocity in mercury : V ～ 1400 m/s

Load on target container.

Structural integrity of the target container?

ΔTmax=17℃
Beam



Stress evaluation of beam windowStress evaluation of beam window
Analytical modelAnalytical model
（1/4model）

・Code LS-DYNA（Vr．950）
・Number of elements    
・Vessel: Shell element　5.16×104

・Hg:  Solid element   　66.3×104

Proton beam
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Effect of beam window type on Effect of beam window type on 
mechanical strengthmechanical strength
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Dynamic responses of  stress at center of window

Window thickness : 2.5mm
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Stress amplitude generated in Flat-plate-type is smaller
advantageous for fatigue strength.

Membrane stress intensity generated in Flat-plate-type is smaller
advantageous for instantaneous brake.



Comparison of changes in stress/pressure/displacement 
at window and upper plate.

Dip. in center of window Press. in mercury Stresses in corner of window
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Normal Service Stress Intensity Limits (SNS)

Stress  
Category  
[Note (1)]

Primary

General Membrane 
Pm

Local Membrane 
PL 

Bending 
Pb

Description Average stress 
across wall to 
maintain equilibrum 
with mechanical 
loads including 
pressure and 
gravity.  Excludes 
discontinuities and 
stress 
concentrations.

Average stress 
across wall 
from pressure 
and gravity.  
Considers 
discontinuities 
but not stress 
concentrations.

Linear bending 
stress 
caused by 
pressure  
and gravity. 
Excludes 
discontinuities 
and stress 
concentrations.

Pm

PL

1.1S m

1.65S m

PL + P b

Secondary 
Membrane 
+ Bending 

Q

Self-equilibrating  
stress caused by  
mechanical 
loads at structural 
discontinuities or 
equivalent linear 
bending stress due 
to differential 
expansion.   
Excludes local 
stress  
concentrations. 

Peak 
F

(1) Local stress  
concentration  
(notch). 
(2) Non-linear 
portion of 
thermal 
stress. 
(3) Stress due 
to  
shock produced 
by  
proton pulses

PL + P b+ Pd + Q

PL + P b+ Pd + Q + F

3Sm

Sa
1.65S m

Dynamic 
Pd

Reversing 
dynamic 
stress 
produced 
by proton 
pulses

[Note (2)]

[Note (4)] [Note (3)]

Legend

Allowable Value

Calculated Value

Stress category and allowable stresses
Same as SNS



Maximum stress ranges(2Salt) at main parts of target container by 
pressure wave
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Conclusions by pressure wave analyses

• Structural integrity of the flat-plate type beam window 
of 316(LN)SS is secured against the pressure wave load 
which generated 1MW proton beam condition. 



Analytical evaluation of cavitation erosion

1. Single bubble behavior under pressure change in mercury.

2. Evaluation of shock wave and micro-jet when bubble collapses. 

3. Evaluation of the damage of the window wall by Liquid-Solid
interaction analyses.



Generation mechanism of cavitation erosion
1. Due to Shock wave

The shock wave generated by rebound following gas bubble shrinkage collides with the 
solid surface (Pmax ~Gpa).

2. Due to micro-jet
Bubble collapses toward the wall, and liquid collide with the solid wall as a micro-jet
（~200m/s, Pmax~GPa）

Concept of micro-jet generationConcept of shock wave generation

Micro-jet Solid wall

Solid wallSolid wall

V=130m/s　 　193MPa(Water)



Single bubble behavior in mercurySingle bubble behavior in mercury
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Growth and collapse behavior of tiny 
bubble (R0=0.1µm).Bubble radius response which is 

dependent on initial bubble radius. 
(Bubbles were excited by sine-wave of 
10MPa-9kHz. ) The collapse speed of the 

bubble influences the micro-jet 
velocity in mercury. 



Relationship between collision speed and impact pressure when Relationship between collision speed and impact pressure when 
micromicro-- jet collides with solid walljet collides with solid wall
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Impact velocity
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Preliminary analyses of pit formation Preliminary analyses of pit formation 
by collision of mercury microby collision of mercury micro--jet with jet with 
solid wallsolid wall（by AUTODYN）



Category to evaluate damage by cavitation erosion. 
*　LEFM: Linear Elastic Fracture Mechanics

Generation of Pit

Local progress
（Pit diam./Depth）

Progress

Estimation of fatigue life

Evaluation by LEFM*
Crack growth rate 

Steady state Transient 
by beam trip

Low thermal stressHigh compressive 
thermal stress

Stress evaluation for 
decreased window thickness 

Uniform progress
（Window thickness decreases）

Acceleration examination

No crack propagation

Evaluation of structural integrity



Concept of crack generated around pit

•The bottom of pit is V-notch shape, so it was assumed initial crack. The crack is 
considered propagating due to alternative pressure wave load. However, structural 
integrity is secured if the crack does not propagate to the limit crack length.

•High compressive stress field is generated on the inner surface of the flat-plate-type 
beam window due to the steady state thermal stress. 
Therefore, inner surface of the beam window does not become tensile stress field 
even if the stress by the pressure wave load. The crack generated around pit does 
not propagate. 

•Although the tensile stress would be generated  due to beam trip (because the 
thermal stress decreases), a frequency of this tensile stress generation is too low to 
affect the cavitation erosion damage. 



Future work
1. Experiment work

It is necessary to repeat experiment more than 108 cycles under practical operation 
condition as possible (purity of mercury, stress field, and flow condition). 

- to measure the profile of damage, especially depth of pit
- to clarify the damage growth behavior (does it stop or progress?) . 

2. Analytical work
It is necessary for pressure wave analyses to consider the EOS of the mercury when 

the cavitation occurs, because mercury would become the bubbly-liquid state.
The bubble-dynamics code is being developed. 

It is necessary to analyze the shock wave and the micro-jet behavior near the 
structure wall which cause erosion 

- to clarify the mechanism of cavitation erosion 
- to supplement the experimental result. 

The analyses is being carried out by an existing Euler-Lagrange impact code 
(preliminary). 



Analytical item necessary for target impact analysis and evaluating cavitation damage.

Irradiation effect at crack 
growth rate

There is a 
necessity for 
developing the 
code. 

Fatigue damage evaluation by which irradiation 
hardening to load cycles in target operation life.
Fracture mechanics evaluation by which “Pit+Crack” is 
assumed.

Evaluation of fatigue life.

・Process of pit progress

・Pit profile.

There is a 
necessity for 
developing the 
code. 

The pit progress is evaluated by the condition of the 
design analysis result (negative pressure) based on the 
experimental data.

Evaluation of pit progress.

DittoDittoElasto-Plastic interaction with solid wall by shock wave 
when bubble collapses in mercury.

When bubble collapses
・Formation of shock wave.

・Nonlinear EOS of 
bubbly-Hg.

・Strain rate hardening.

dε/dt = ～107

AUTODYN
DYTRAN
RADIOSS

Elasto-Plastic interaction with solid wall by micro jet 
when bubble collapses in mercury.

・Is it possible because of 
the potential flow?

FLUENTFormation of micro jet when bubble collapses in mercury.
FROW-3D
Etc.（Stagnant and flowing condition）

When bubble collapses
・Formation of micro jet

・Nonlinear EOS of 
bubbly-Hg.

・Direct coupling of 
bubbly-liquid equations.

AUTODYN
DYTRAN
RADIOSS
Etc.

Fluid-Structure interaction analysis which uses nonlinear 
EOS of Hg which considers dynamic response of bubbly-
liquid. 
The macro behavior of the bubbly-liquid is simulated. 

Interaction of bubbly-liquid 
and container

Note and necessary dataAnalytical codeAnalytical contentAnalytical item
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