

Particle-transport Calculation

Shin-ichiro Meigo meigo@linac.tokai.jaeri.go.jp

- 1. Introduction
- 2. NMTC/JAM
- 3. Comparison with experiment
- 4. Summary

Neutronics calculation are performed for MLF design with NMTC/JAM such as shielding and property of spallation neutron source(intensity, pulse structure, heat deposition and so on)

NMTC/JAERI: Standard calculation for JKJ Spallation neutron source, Transmutation (ADS) Beam line (3N BT), Shielding calculation for 50GeV synchrotron

As for shielding, MCNPX is employed as well.

For assurance of prediction capability of the particle transport code.

NMTC/JAM and MCNPX are compared with the experimental data.

NMTC: Nucleon Meson Transport Code Monte Carlo technique (Intra nuclear cascade + evaporation) + inter transport Bertini Cascade model (up to 3.5 GeV)

JAM: Jet AA Microscopic transport model, Phys. Rev. C61,024901(1999) Developed by research group for hadron science at JAERI Applicable energy ~1 TeV All kind of hadrons can be transported.

NMTC/JAM:

Above 3.5 GeV: JAM Below 3.5 GeV: Bertini Not only installed JAM, but also the following modified. Revised the nucleon-nucleus cross section New evaporation model (GEM: Generalized Evaporation Model) Charged particle transport in magnetic field calculation

Histo	ory of NMTC/JA	 Downsizing PC(Linux) DEC-Alpha(Unix) Sun(Solaris) 	Accelerator Project					
1951	NMTC(ORNL)	Intranuclear cascade model						
		Evaporation model						
1983	NMTC/JAERI	Implemented high energy fission model						
1997	NMTC/JAERI97 N-nucleus cross section revised(1)							
		Level density parameter						
		Simplify of geometry (CG geometry)						
	Importance sampling							
2000	NMTC/JAM	JAM model						
		N-nucleus cross section revised (2)						
		Transport in magnetic field	Transport in magnetic field					

Now available:Automatic parallel calculation GG geometry QMD (Quantum Molecular Dynamics) model

JAM: Comparison of particle production cross section (1)

JAM agrees with the experiment for 13.7-GeV proton incidence.

JAM: Comparison of double differential cross section (DDX)

JAM shows good agreement with experiment for 3-GeV protons. Also Bertini cascade is in good agreement so that Bertini used less than 3.5 GeV.

JAM: Decay of particle

Name	kf-code	mass (MeV)	charge	baryon
р	2212	938.3	1	1
n	2112	939.6	0	1
π^+	211	139.6	1	0
π^0	111	135.0	0	0
π -	-211	139.6	-1	0
μ^+	-13	105.7	1	0
μ	13	105.7	-1	0
K ⁺	321	493.6	1	0
\mathbf{K}^{0}	311	497.7	0	0
K⁻	-321	493.6	-1	0
ν_{e}	12	0.0	0	0
ν_{μ}	14	0.0	0	0
η	221	547.5	0	0
η'	331	957.8	0	0
Λ^0	3122	1115.7	0	1
Σ^+	3222	1189.4	1	1
Σ^0	3212	1192.5	0	1
Σ^{-}	3112	1197.4	-1	1
Ξ^0	3322	1314.9	0	1
Ξ	3312	1321.3	-1	1
Ω^{-}	3334	1672.4	-1	1

π^0	\rightarrow	γ	+	γ			100%
π^+	\rightarrow	μ^+	+	ν_{μ}			100%
π^{-}	\rightarrow	μ	+	ν_{μ}			100%
$\boldsymbol{\mu}^{\!\!\!+}$	\rightarrow	e^+	+	$\overline{\nu_e}$	+	ν_{μ}	100%
μ	\rightarrow	e	+	$\overline{\nu_e}$	+	ν_{μ}	100%
K^0	\rightarrow	π^+	+	р			68.61%
	\rightarrow	π^0	+	π^0			31.39%
	\rightarrow	γ	+	γ			other
\mathbf{K}^+	\rightarrow	$\mu^{\scriptscriptstyle +}$	+	ν_{μ}			63.51%
	\rightarrow	π^+	+	π^{-}			other
K-	\rightarrow	μ	+	ν_{μ}			63.51%
	\rightarrow	π^+	+	π			other
η	\rightarrow	γ	+	γ			38.9%
	\rightarrow	π^0	+	π^0	+	π^0	31.9%
	\rightarrow	π^+	+	π^{-}	+	π^0	23.7%
	\rightarrow	π^+	+	π^{-}	+	γ	other

η'	\rightarrow	π^+	+	π^{-}	+	η	44.1%
	\rightarrow	π^0	+	π^0	+	η	20.5%
	\rightarrow	$\pi^{\scriptscriptstyle +}$	+	π^{-}	+	γ	30.1%
	\rightarrow	γ	+	γ			other
Λ^0	\rightarrow	р	+	π^{-}			64.1%
	\rightarrow	n	+	π^0			other
Σ^+	\rightarrow	р	+	π^0			51.57%
	\rightarrow	n	+	π^+			other
Σ^0	\rightarrow	Λ^0	+	γ			100%
Σ-	\rightarrow	n	+	π^{-}			100%
Ξ^0	\rightarrow	Λ^0	+	π^0			100%
Ξ	\rightarrow	Λ^0	+	π^{-}			100%
Ω^+	\rightarrow	Λ^0	+	K⁻			67.8%
	\rightarrow	Ξ^0	+	π^{-}			23.6%
	\rightarrow	Ξ	+	π^0			other

All decay mode of hadrons is taken into account.

Transport caluculation of all hadrons available.

JAM: Nucleon nucleus cross section

Niita's systematics

Good agreement with experiment

JAM: Angular distribution for elastic

Also systematics by Niita is used.

NMTC/JAM: Charged particle transport in magnetic field

Compared with DECAY-TURTLE(Beam tracking)

Phase space distribution at C-target.

Phase space distribution at Hg-target.

NMTC/JAM gives good agreement with DECAY-TURTLE.

NMTC/JAM New evaporation model: GEM

Good agreement with the experiment. Especially for ⁷Be production cross section Spectrum of neutron produced from thick target by 0.5, 1.5 GeV p Meigo et al., Nucl. Instr. and Meth A431 (1999) 521

KEK PS 2 beam line

Neutron spectrum from Fe target

Fe(15x15x20cm) irradiated by 1.5GeV protons

In-medium NNCS (red) Remarkable good agreement

NMTC/JAM is adopted to estimate production of neutrons at beam line(3-N BT) and 3-GeV RCS in the present project.

Neutron Yield

12-GeV protonon lead target.Mn-bath tech.

Good agreement

(p,xn) cross section at 0-deg

Important property for the design of beam line around C target

Activation experiment at AGS Spallation Taget Experiment (ASTE)

Shielding Experiment ASTE

Code Calculation Results - Steel -

- NMTC/JAM (free)
 - Underestimation at the beginning, adequate for deep penetration
- NMTC/JAM (in-medium)
 - Adequate for overall
- MCNPX
 - Underestimation at the beginning, slightly underestimation for deep penetration

Code Calculation Results - Concrete -

- NMTC/JAM (free)
 - Underestimation at the beginning, slightly overestimation for deep penetration
- NMTC/JAM (in-medium)
 - Overestimation for deep penetration
- MCNPX
 - Underestimation at the beginning, adequate for deep penetration

Comparison of Code/Experiment

MCNPXFe:underestimate factor 2Concreteunderestimate factor 2

NMTC/JAM and MCNPX can predict within a factor of 2 for shielding.

NMTC/JAM and MCNPX can predict with good accuracy for the performance of neutron source property.