Tensile Property of candidate material for spallation target vessel after irradiation

> Kenji KIKUCHI, JAERI Masayoshi KAWAI, KEK Shigeru SAITO, JAERI

Materials

- Austenitic stainless steel 316 is the best understood one with a large database of neutron irradiation.
- There are another types with different kinds of modification, which includes JPCA (Japanese primary candidate alloy) and 316F.
- JPCA is developed to reduce a swelling under neutron irradiation.

Chemical compositions

316L Bal 17.17 12.24 2.31 1.75 0.077 0.07 .0009 0.019 0.35 0.02 .0007 0.	
	073 0.002
Ec316LN Bal 17.45 12.2 2.5 1.81 0.024 0.39 0.	067
JPCA Bal 14.14 15.87 2.29 1.54 0.22 0.028 .004 0.058 0.50 0.026 .004 0.	03
316F Bal 16.79 13.95 2.34 0.23 <.001 <.01 0.040 0.04 <.003 .002 0.	011

Manufacturing process

• SA JPCA

> Vacuum induction melting, 2tons.

> Vacuum arc re-melting, 1.5tons.

> Cutting.

> Soaking, 1250°C, 16hs.

> Forging, 1200°C.

> Hot rolling.

> Cutting.

> Intermediate annealing, 1150°C/1h/WQ.

- > Straightening.
- > Cutting 15t x 300W x 500L.

 SINQ Target Irradiation Program STIP
STIP-1 was carried out from July 1998 to December 1999 in SINQ. More 1500 samples were irradiated to a maximum dose of 12.5 dpa and He concentration of 900

appm.

STIP-I: Specimen package	Specimen package and temperature
TEM / SP sample Tensile - S sample Tensile - L sample Tensile - L sample Bending fatigue s	STIP-I: Irradiation temperature
cture showing how the different types of specimens packed in a sp	<figure><text></text></figure>

International collaboration

Tensile	B-fatique	Tear	Bend bar	Charpy	S.Punch	TEM
CEA	PSI	PSI	FZJ	PSI	FZJ	CEA
FZJ	JAERI		PSI		PSI	FZJ
PSI						PSI
						PSI
e T	he sample	es were	e delivere	d to CE.	A, FZJ,	

Post Irradiation Experiment at JAERI Materials

- > <u>JPCA-SA</u>, <u>316F-SA</u>, 316F-CW
- Incident proton energy 580MeV、
- Specimen temperature :80? 400°C
- dpa(proton+spallation neutron) 3.5? 11.8 dpa
- Calculated gas production He:70appm/dpa、 H:500appm/dpa
- Tensile test
 - > At RT and 250°C in air
 - > Pulling speed: 0.2mm/min
 - > Strain measured by image analyses
- Fractography

Pulling Tester

Image analyses of specimen at 250°C

SS curves of JPCA-SA at RT & 250°C

True strain - true stress curves of JPCA-SA

Ductile Fracture Surface at max dpa tested at RT & 250°C

SS curves of 316F-SA

KIKUCHI, N-TAC 10/2002 at JAERI

Dpa-YS plots in spallation and fission at Tirr. 250

Comparison of irradiation property of JPCA and 316F in SINQ with 316L/304L in LANCE(S. Maloy) at

Comparison of STN in spallation with those in fission at Tirr<250°C. Re-plotting our data on LANCE plots

Proton, **STN/dpa**

Neutron, STN/dpa

Summary

- Irradiation results of JPCA in spallation could be understood by a trend in neutron radiation.
- An increase of YS as well as a decrease of STN due to radiation damage in spallation is slightly larger than those in fission.
- We never experienced fully lost of STN around 4dpa in JPCA, as reported for 316L/304L in LANSCE.
- Fatigue test is under way in Hot Cell.