Skyshine and Other Dose Evaluation

- 1. Radiation design targets
- 2. Skyshine evaluation
- 3. Proton beam line shield
- 4. Air and water activation and waste

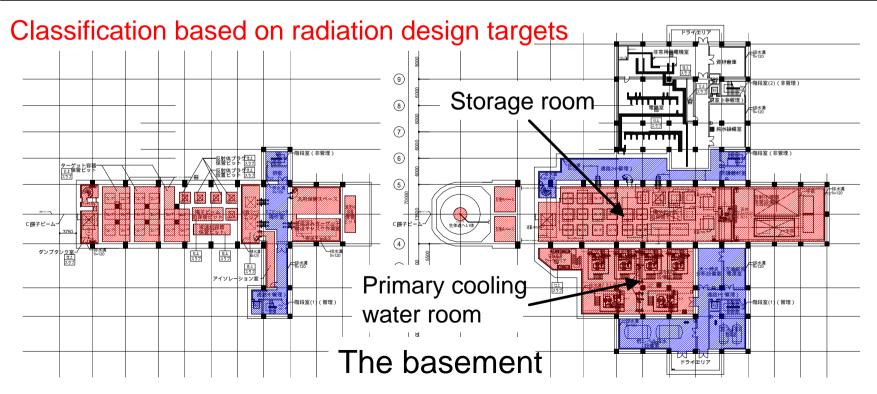
JAERI Chikara KONNO

Neutron Technical Advisory Committee Meeting 2002.10.28~30

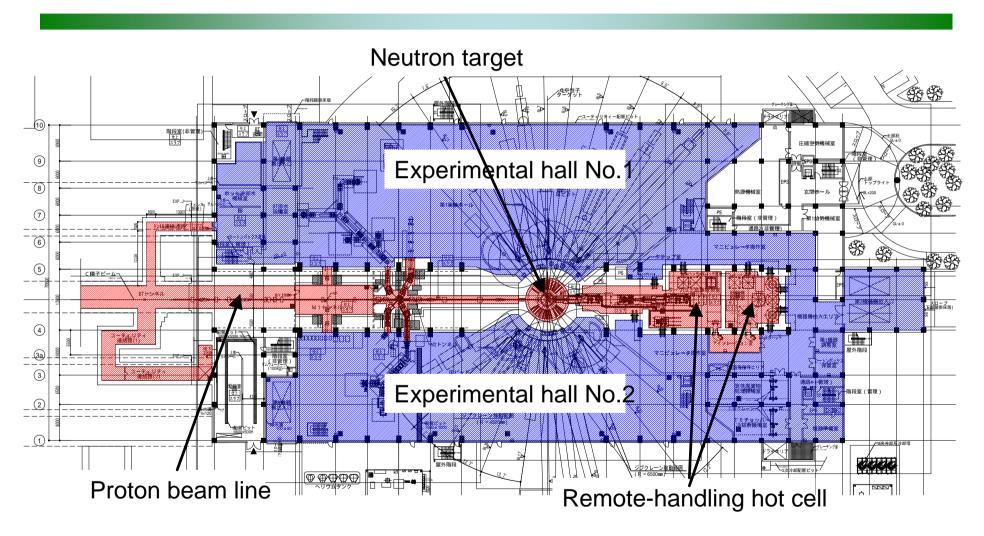
Radiation Design Targets

Item	Design target*	Japanese Law	
Dose rate at Site boundary	? 50 μSv/year (? 35 μSv/year for Phase-I)	? 250 μSv/3 months	
Dose rate at General area	? 0.25 μSv/hour	? 20 μSv/week**	
Dose rate at Radiation controlled area I***	? 12.5 μSv/hour	? 1 mSv/week	
Radioactive concentration at discharge	1/2 of Japanese law		
Ground water activation****	? 5 mSv/hour for line loss ? 11mSv/hour for point loss		

^{*:} Design targets are smaller (1/2 ~ 1/20) than Japanese law.

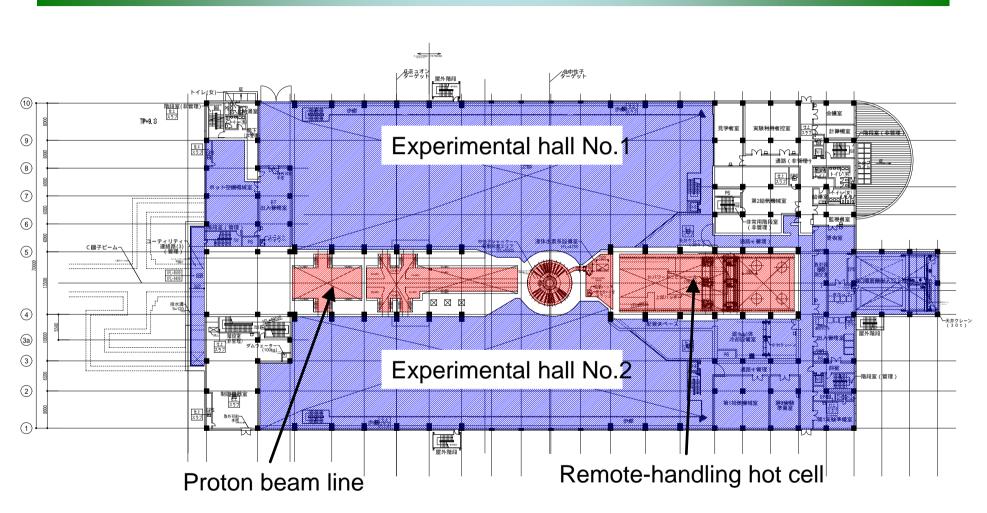

^{**: 1}week = 40 hours

^{***:} Registered radiation workers can enter freely any time.

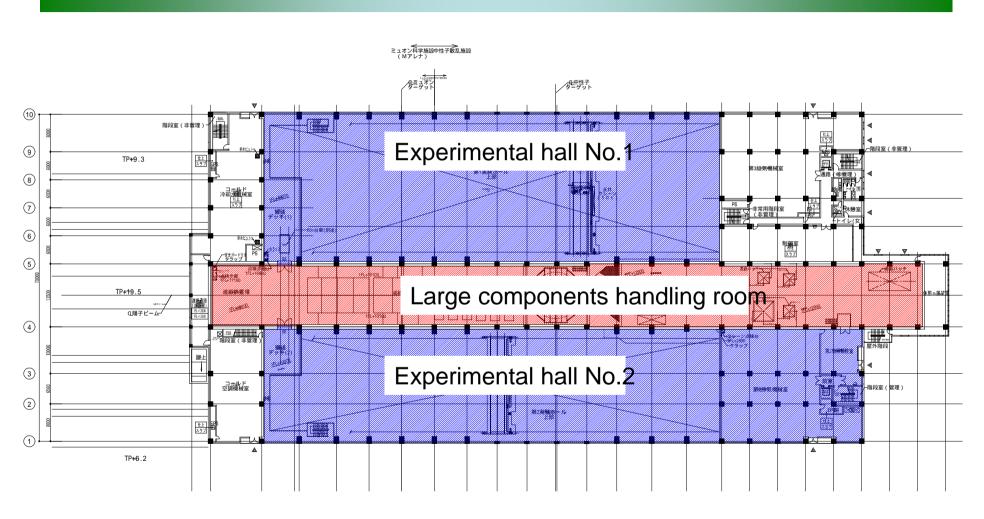

^{**** :} This corresponds to $?10\mu Sv/y$ if one drinks ground water at site boundary for one year.

MLF Area Classification -(1)

General area : No color	- Dose rate is always less than 0.25 μSv/h.	
No-restricted radiation controlled area : Blue	 Dose rate is always less than 12.5 μSv/h. Radiation workers can freely enter any time. There can exist radioactive contamination in the air or on the surface. 	
Restricted radiation controlled area : Red	 Dose rate is always or occasionally higher than 12.5 μSv/h. Even radiation workers are restricted to enter. There can exist radioactive contamination in the air or on the surface. 	



MLF Area Classification -(2)


The first floor

MLF Area Classification -(3)

The second floor

MLF Area Classification -(4)

The third floor

Dose and Activation Evaluation Methods

Evaluation methods:

- Dose: Moyer's model, NMTC/JAM, MCNPX2.1.5
- Activation : NMTC/JAM and DCHAIN-SP
- Evaluation accuracy --> Reports by Meigo and Kai
- Evaluation margin :
 - ✓ Moyer's model-->none (Moyer's model overestimates)
 - ✓ Monte Carlo calculation --> Factor 2 (None for activation evaluation)

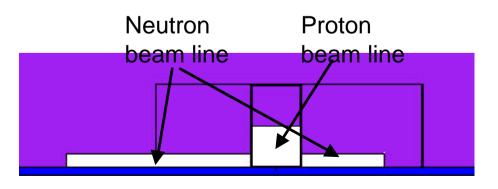
Evaluation Conditions

- Proton beam operation time: 5000 h/year
 (20 days/cycle, 12 cycles/year)
- Proton beam power : 1 MW

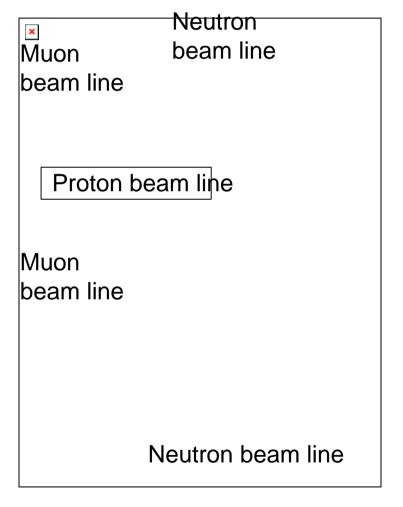
Dose and Activation Evaluation Items

Shield for neutrons and gammas: total dose

- Bulk shield and Streaming
 - ✓ Neutron target-->presentation by Maekawa
 - ✓ Muon target -->presentation by Miyake
 - ✓ Collimator-->presentation by Miyake
 - ✓ Magnets [1W/m and 1kW]
 - √Skyshine

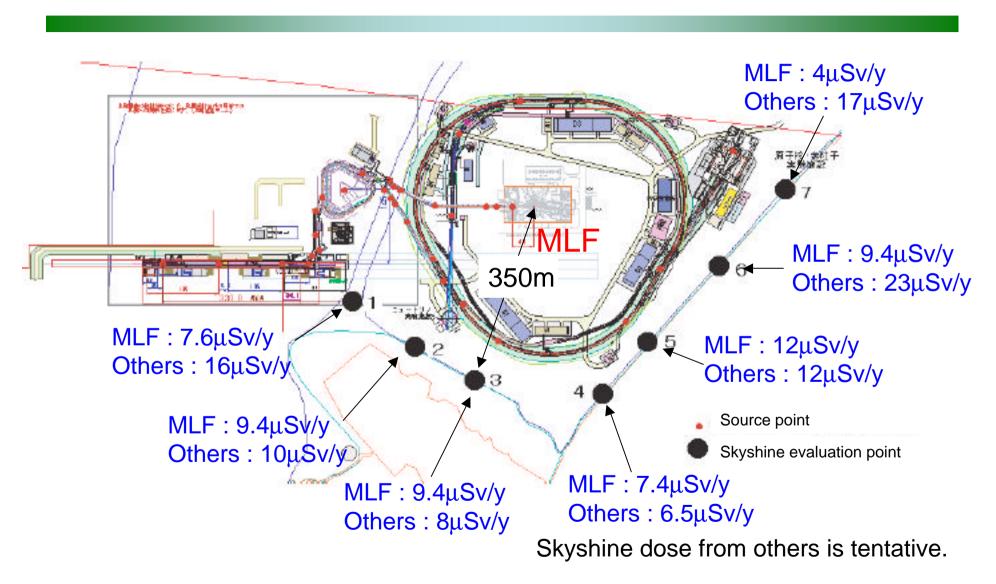

Activation: air, water and apparatus

- gamma dose in processing room for air and water
- gamma dose at maintenance
- radioactive concentration at discharge of air and water


Skyshine Evaluation- (1)

Calculation code: MCNPX
Calculation conditions
(Average dose rate on the outer surface of shield)

- neutron beam line : 2 μSv/h
- muon beam line : 2 μSv/h
- proton beam line : 6 μSv/h (including a margin of 2)



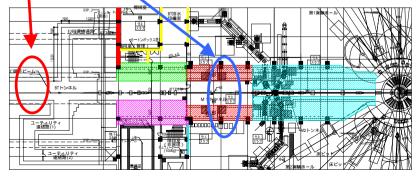
Vertical model

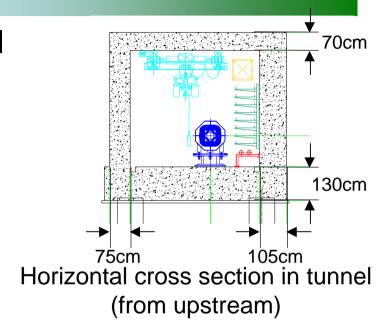
Horizontal model

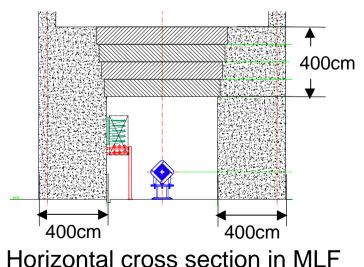
Skyshine Evaluation- (2)

Total skyshine dose will be less than 35 μ Sv/y.

Proton Beam Line Shield (1)


- 1W/m beam loss -


Calculation method: Moyer's model Tunnel: criteria is soil activation (5mSv/h).

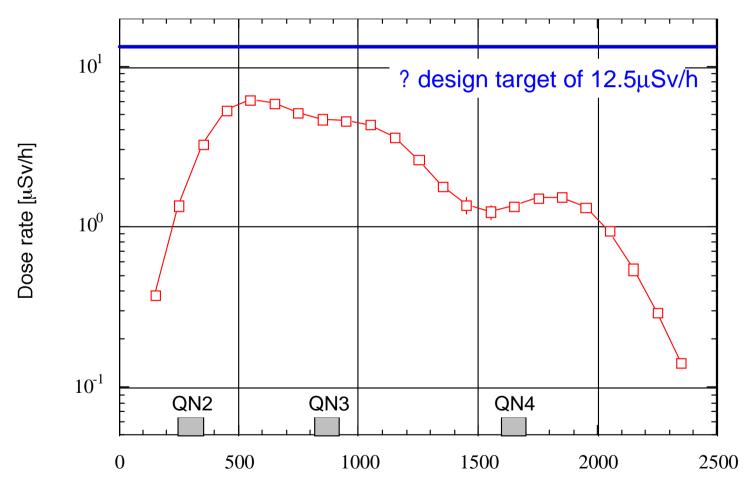

- ceiling : concrete 70cm
- floor : concrete 130cm
- right side (from upstream) : concrete 105cm
- eft side (from upstream) : concrete 75cm

In MLF; criteria is 12.5 μ Sv/h.

deiling, side : concrete 400cm

Proton Beam Line Shield (2)

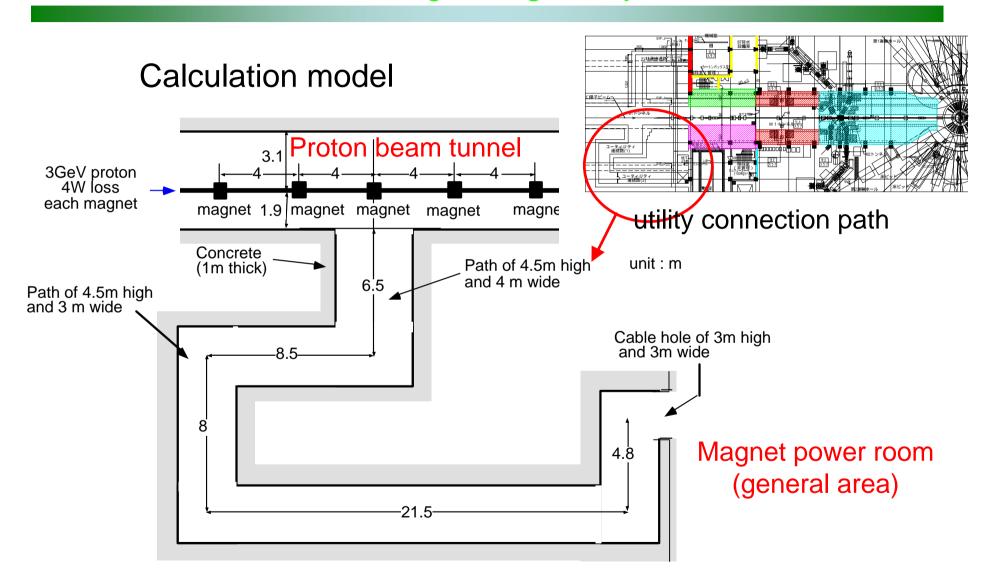
- proton beam line between muon and neutron target -


Beam loss at magnets is ~1kW.

Calculation model (R-Z geometry) after muon target Unit: m **←**3.2**→** -7.9 Concrete 7.25 3GeV proton 3GeV proton 3GeV proton 928.6W loss 461W loss 177.6W loss QN₂ QN3 QN4 0.65 Magnet (Iron)

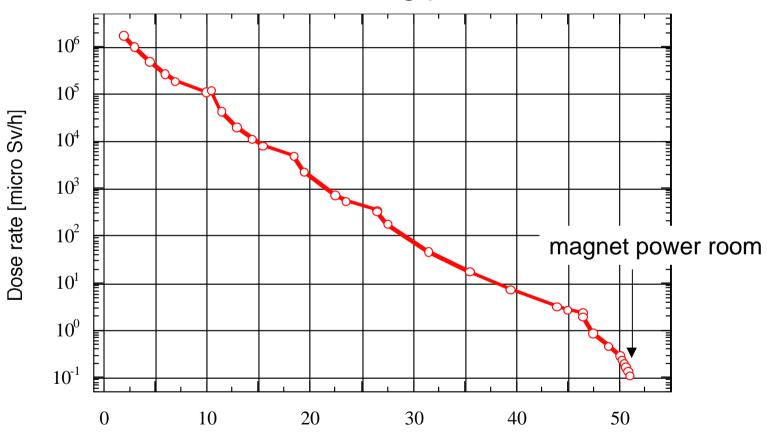
Proton Beam Line Shield (3)

- proton beam line between muon and neutron target -


Calculated dose rate on outer surface of shield with MCNPX

Horizontal distance along proton beam line [cm]

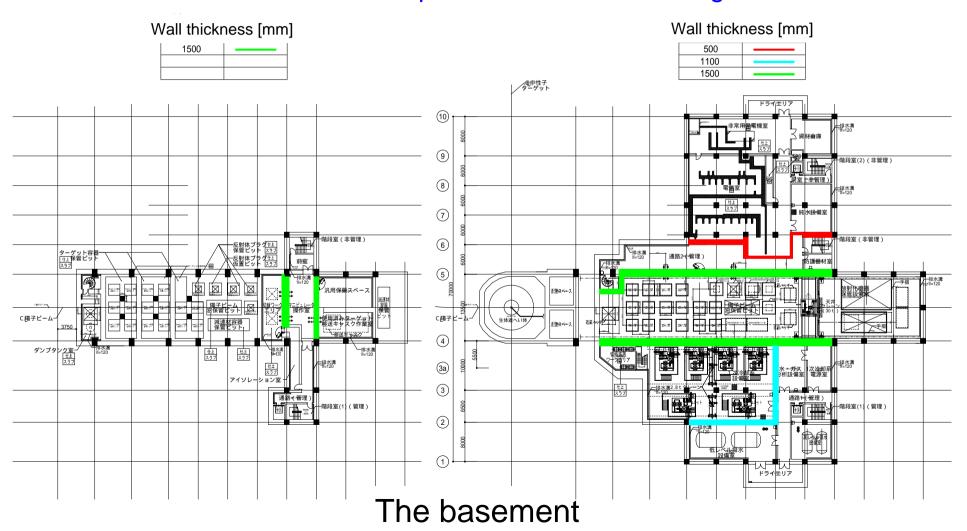
Proton Beam Line Shield (4)


- Streaming through Labyrinth -

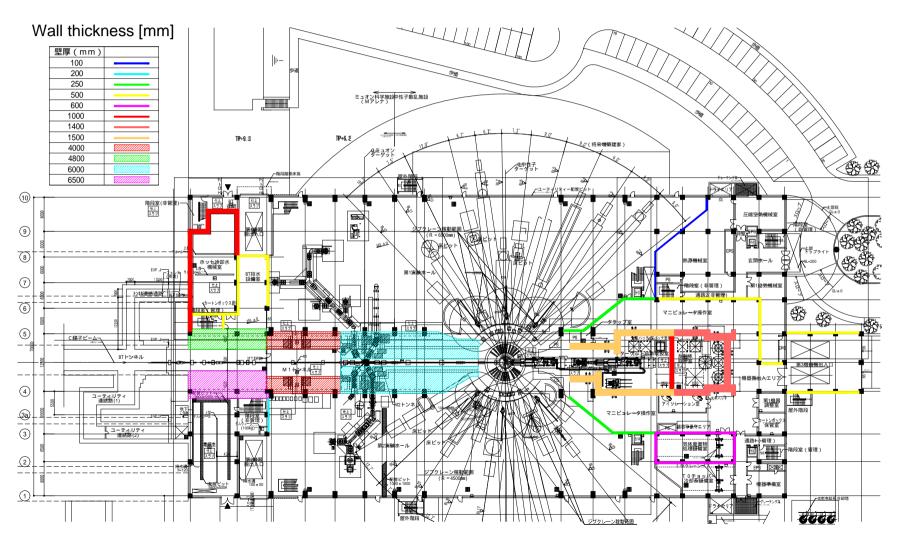
Proton Beam Line Shield (5)

- Streaming through Labyrinth -

Calculated dose rate along path with MCNPX

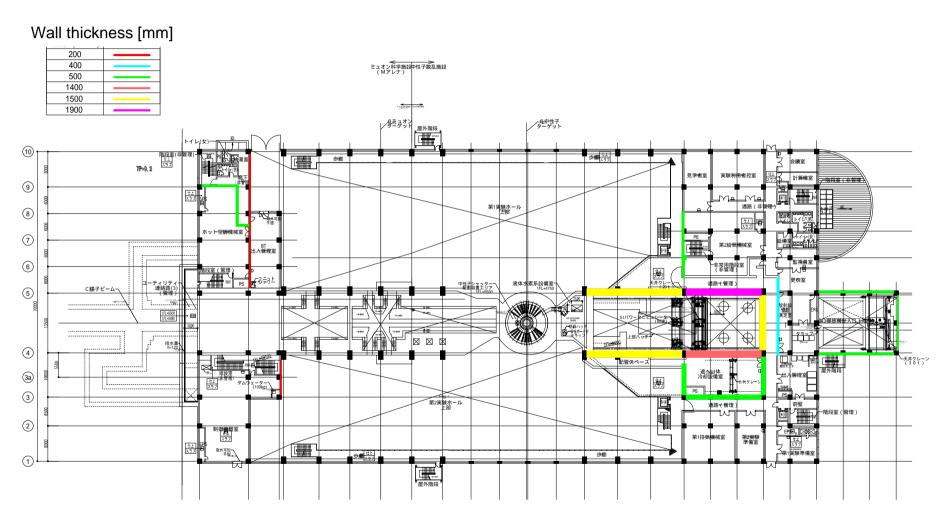


Distance from tunnel along path [m]

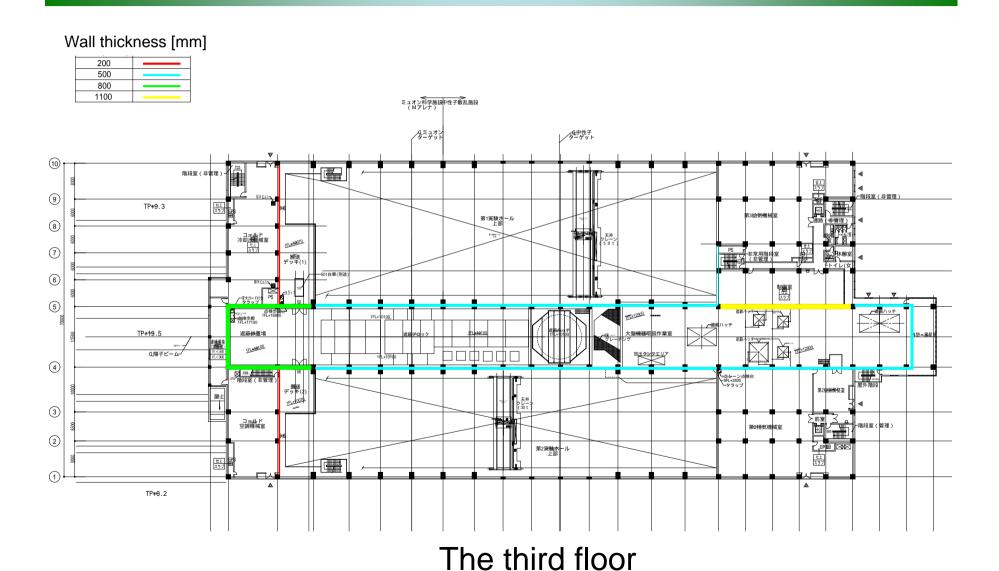

Dose rate at magnet power room (general area) is less than the design target of 0.25µSv/h.

Shielding Walls -(1)

Concrete wall thickness required for neutron and/or gamma shield



Shielding Walls -(2)


The first floor

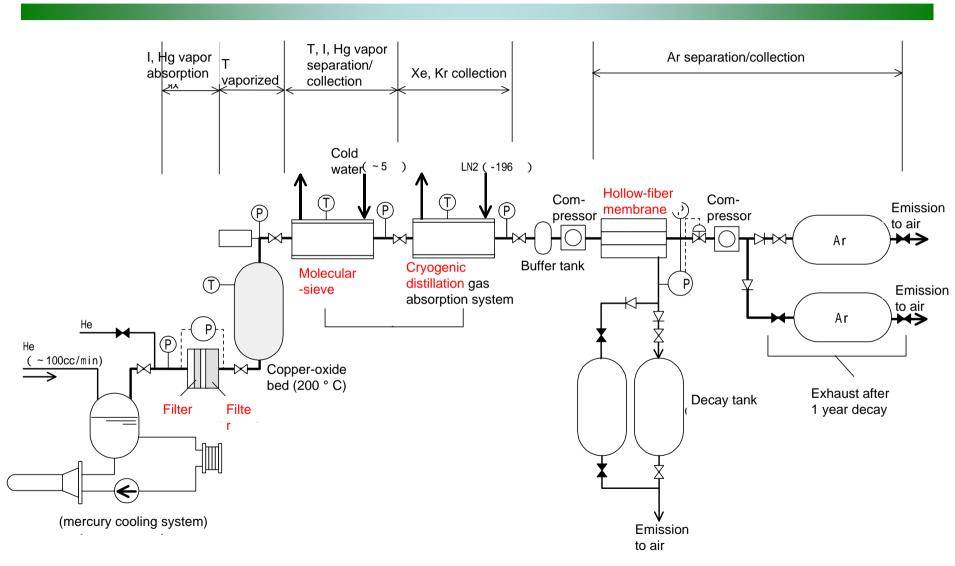
Shielding Walls -(3)

The second floor

Shielding Walls -(4)

Radioactive Nuclides in Cover Gas

- Cover gas of mercury and water surge tanks will be batchprocessed. Tritium, rare noble gases, iodine, radioactive mercury vapor will be included in cover gas.
- Quantity of radioactive nuclides in cover gas is very large.


✓ Tritium : 9.3 x 10¹³ Bq/y

✓ Xe-127: 1.3 x 10¹³ Bq/y

--> Off gas process system will be required.

Radioactive emissions	Source	Collection or separation equipment	Decontamination factor
Tritium	Tritium generated in mercury, ⅓O, D₂O, structural material and air	Tritium collection system using molecular-sieve	1000
Dave wells were	Rare noble gases generated in mercury	Ar : Hollow-fiber membrane	50
Rare noble gases	structural material	Xe, Kr :Cryogenic distilation column	100
lodine generated in mercury (1/1000 of total amount of lodine was assumed to release from mercury)		lodine absorption filter	2000
Radioactive mercury vapor Radiactive mercury (1/1000 of total amount of mercury was assumed to release)		Mercury vapor collection system	10000

Concept of Off Gas Process System

This system will be installed for 1MW operation.

Annual Emission of Radioactive Nuclides from MLF Stack

Nu	clide	Total inventory after 1 year operation	Decontamination factor (DF) and Relaese rate (RR)	Annual emission	Emission concentration*	Limit of Emission concentration	Emission concentration / Limit
3	Ť	9.3 x 10 ¹³ Bq/y	DF : 10°	9.3 x 10 ¹⁰ Bq/y	1.2 x 10⁴ Bq/cm³	5.0 x 10 ³ Bq/cm ³	0.024
	37Ar	3.7 x 10 ¹² Bq/y	DF: 5 x 10 ¹	7.4 x 10 ¹⁰ Bq/y	9.6 x 10⁵ Bq/cm³	7.0 x 10° Bq/cm³	1.4 x 10 ⁻⁷
Ar	39Ar	7.7 x 10° Bq/y		1.5 x 10° Bq/y	2.0 x 10 ⁻⁷ Bq/cm ³	2.0 x 10 ⁻¹ Bq/cm ³	1.0 x 10 ⁻⁶
	⁴² Ar	5.6 x 10° Bq/y		1.2 x 10° Bq/y	1.6 x 10 ⁻⁷ Bq/cm ³	2.0 x 10 ⁻¹ Bq/cm ³	8.0 x 10 ⁻⁷
	124	2.3 x 10 ¹² Bq/y	DF: 2 x 10 ³	1.2 x 10°Bq/y	1.6 x 10° Bq/cm³	9.0 x 10 ⁶ Bq/cm ³	1.8 x 10⁴
1	125	1.5 x 10 ¹³ Bq/y	RR : 1/1000	7.5 x 10° Bq/y	9.8 x 10° Bq/cm³	1 x 10⁵ Bq/cm³	9.8 x 10⁴
	126	9.0 x 10 ¹¹ Bq/y		4.5 x 10° Bq/y	5.9 x 10 ⁻¹⁰ Bq/cm ³	5.0 x 10 ⁶ Bq/cm ³	1.2 x 10⁴
¹²⁷ Xe		1.3 x 10 ¹³ Bq/y	DF : 10°	1.3 x 10 ¹¹ Bq/y	1.7 x 10⁴ Bq/cm³	3.0 x 10 ³ Bq/cm ³	0.057
1/-	81 K r	1.2 x 10 ⁷ Bq/y	DF :10°	1.2 x 10⁵ Bq/y	1.6 x 10 ⁻¹⁰ Bq/cm ³	1.0 x 10¹ Bq/cm³	1.6 x 10°
Kr	85 K r	2.3 x 10 ¹⁰ Bq/y		2.3 x 10° Bq/y	3.0 x 10 ⁻⁷ Bq/cm ³	1.0 x 10 ⁻¹ Bq/cm ³	3.0 x 10 ⁻⁶
	¹⁹⁴ Hg	3.4 x 10 ¹¹ Bq/y	DF :10 ^t	3.4 x 10⁴ Bq/y	4.4 x 10 ⁻¹¹ Bq/cm ³	3.0 x 10 ⁶ Bq/cm ³	1.5 x 10 ⁻⁵
	¹⁹⁵ Hg	2.1 x 10¹⁴ Bq/y	RR : 1/1000	2.1 x 10 ⁷ Bq/y	2.7 x 10 ^s Bq/cm ^s	9.0 x 10⁵ Bq/cm³	3.0 x 10⁴
Hg	¹⁹⁷ Hg	1.8 x 10 ¹⁵ Bq/y		1.8 x 10° Bq/y	2.3 x 10 ⁻⁷ Bq/cm ³	3.0 x 10⁵ Bq/cm³	7.7 x 10 ⁻³
	²⁰³ Hg	2.3 x 10 ¹⁵ Bq/y		2.3 x 10° Bq/y	3.0 x 10 ⁻⁷ Bq/cm ³	2.0 x 10⁵ Bq/cm³	0.015
Total						0.096 **	

^{*:} Total air volume released from MLF stack for one year is assumed to be 7.7 x 10¹⁴ cm³ (tentative).

Annual emission of radioactive nuclides from MLF stack is smaller than Japanese law and design target.

^{**:} Exclude contribution from 3NBT.

Liquid Waste in MLF

- Most dominant radioactive nuclide generated in coolant water is tritium (> 99%).
 - Light water: 5.4 x 10¹¹Bq/year, 1.1 x 10¹³Bq/30year
 - Heavy water: 6.8 x 10¹¹Bq/year, 1.3 x 10¹³Bq/30year
 - Coolant inventory : ~10m³
 - Concentration of tritium in light water will be over that (?1.2 x 10³ Bq/cc) transferable to JAERI waste processing facility.
- Light water can not be discharged and transferred. If tritium concentration is too high, it is replaced and stocked in MLF.
- Heavy water is assumed to be used for a life time of the facility. If tritium concentration is too high, it is replaced and stocked in MLF.
- Mercury will be used for a life time of the facility, and will not be replaced.

Summary

Shielding design has been finished.

- Skyshine
- Proton beam line shield
- Air and water activation

The structure of MLF is almost fixed.

Future work

- Accident analysis
- Off gas process system