NTAC, Oct. 28-30, 2002

III-03-Harada

Moderator neutronics for poisoned and unpoisoned decoupled moderators

M. Harada, M. Teshigawara, T. Kai, N. Watanabe,*Y.Kinayagi Japan Atomic Energy Research Institute *Hokkaido University

Decoupled moderators

• Function :

To provide narrow neutron pulses with short tail & keeping high peak intensity

• Type :

poisoned (upstream)
unpoisoned (downstream)

- Moderator material : 20K Super-critical hydrogen
- Neutron beam extraction:

Both sides from each moderator

6 beam-lines (3 for each viewed surface x 2) per moderator

Neutronics optimization

- Neutronics optimizations by model calculation were performed
 - Code
 - NMTC/JAM code, MCNP-4C code.
 - Model

Realistic TMRA(Target-Moderator-Reflector-Assembly) model Simple model

- Para-hydrogen ratio :100 %
 - Para-ortho ratio must be stable

• 100% para will be only selection for stable ratio, provided strong ortho to para catalyst.

Average operation temperature of hydrogen : 20K

Realistic TMRA calculation model

Para-hydrogen ratio dependence

•Pulse characteristics, especially pulse tail, is strongly dependent on para-hydrogen ratio.

Temperature (density) Dependence

When hydrogen temperature increases by 1K, hydrogen density decreases by 1%, resulting in 1% decrease of peak intensity

Required Design Parameters

- Major design parameters.
 - Moderator shape & sizes
 - Decoupling Energy (E_d)
 - Angular Coverage
 - Poison material, shape and position
 - Moderator position relative to the target
- Other parameters
 - Decoupler extension along H₂ transfer line
 - Max. beam extraction angle
 - Decoupled
 - Poisoned
 - Effect of cooling water & acceptable water channel width
 - Effect of gap between decoupler & liner

Moderator Size

Determination of Moderator Size

- When the thickness is increased to 6.25cm^T, FOM is almost saturated.
- H_2 inventory should be as low as possible.
- 14cm^W is too large to accommodate 2 decoupled moderators.
- 13cm^W gives higher FOM than 12cm^W
- 12cm^H & 14cm^H give almost the same FOM
- Thus adopt $13^{W} \times 12^{H} \times 6.2^{T} \text{ cm}^{3}$
- The poisoned moderator size and shape were the same as those of the unpoisoned moderator because of the almost same tendency.

Required chamber wall thickness is discussed by Kogawa

Decoupler

Beam Extraction Angle Dependence on Pulse Shape

Although the concave-type is superior to the canteentype from a viewpoint of neutronics, it is given up because feasibility of manufacturing for such a fancy shape is poor.

Moderator Shape : Canteen Type Maximum Angle (Unpoisoned) : 17.5° Maximum Angle (Poisoned) : 7.5°

Poison material, shape and position

Conclusion

- By neutronics calculations, major design parameters of the poisoned and the unpoisoned decoupled moderators were determined.
- Issue to be solved
 - Effect of decoupler gap for welding
 - Reliability of scattering kernel of liquid hydrogen

etc.

Canteen-type v.s. Convex-Type

Para-hydrogen ratio dependence

Para ratio : 90 ~ 100 %

Acceptable para hydrogen ratio dependence of pulse characteristics?