Neutronic Study on Coupled Hydrogen Moderator

Tetsuya KAI, Masahide HARADA, Makoto TESHIGAWARA

Japan Atomic Energy Research Institute

Present Coupled H₂ Moderator Design

- Design criteria
 - Highest I_{int} (time-integrated cold neutron intensity)
 - Highest I_{peak} (pulse peak intensity)
 - Wide angular coverage with smallest angular dependence
- 100% para supercritical H₂
- Larger volume of cylindrical Shape
 - Diameter: 140 mm
 - Height: ~100 mm
- Beam extraction angular coverage: 45.0° and 50.8°
- Viewed surface: 100 mm x 100 mm
- Optimized H₂O PM without extension
- Be reflector (D₂O cooled)

Para H₂ Content vs Moderator Thickness

- I_{int}(para100%) > I_{int}(other ratios)
 (at H₂ thickness > 140 mm)
- Optimum PM dimensions were same as those of normal one.
- Thick para 100% moderator is adopted.

Calculation model

- Lateral dimension:
 120^W x 120^H mm
- Premoderator thickness:20 mm (near), 10 mm (side, far)
- No PM extension
- Viewed surface 100mm x 100mm

Pulse Peak Intensity & Pulse Width

- Increase of I_{int} is due to pulse width increase.
- 100% para H₂ provides the highest I_{peak} with 100~140 mm thickness.
- Results in optimum H₂
 thickness: ~140 mm

Neutron Spatial Distribution in 100% para H₂ Moderator

Rectangular Shape

Edge parts near PM are brighter than the central.

Edge parts should be in use.

Moderator Height Optimization

In case of rectangular shape

- H=100 mm is optimal for I_{int} & I_{peak}.
- Pulse width with H unchanged

Neutron Beam Line Arrangement

- 11 out of 23 instruments request the beam from the coupled moderator.
- Wide angular coverage (50.8° at max.) is indispensable for the coupled moderator.

Angular Dependence

In case of rectangular shape

• I_{int} decrease with increasing θ

• $I_{int}(\theta = 25.4^{\circ}) \sim 0.7 \times I_{int}(\theta = 0^{\circ})$

Large decrease in I_{int} at larger
 θ is due to the decrease of
 effective viewed moderator
 volume with θ.

Detectors

Proposal of Cylindrical Shape Moderator

- In order to improve θ
 dependence, cylindrical
 shape was proposed.
- $\int_{0 \text{ min}}^{0 \text{ max}} I_{\text{int}}(\mathbf{q}) d\mathbf{q}$ increases

by adopting the cylindrical.

Optimization Study on Cylindrical Shape Moderator

- More realistic model is adopted.
- Optimization studies:
 - Moderator diameter
 - Top and bottom shape of moderator chamber
 - Neutron beam origin

Diameter of Moderator

- θ dependence decreases with diameter (ϕ).
- Increase of I_{int} with ϕ is almost saturated at ϕ =140 mm.
- Optimum ϕ is ~140 mm.

Top shape of Moderator Chamber (1)

- I_{int} decrease with the top (target side) plate thickness.
- If thin plate is adopted, the plate must have a certain curvature to resist against inner pressure.
- Strategy of engineering design is studied.

Thick flat or Thin curved?

Top Shape of Moderator Chamber (2)

Neutron Beam Origin(1)

- Viewed surface is 100 x 100 mm.
- "Neutron beam origin" must be fixed.
- Choice of X is an important issue.

(X: distance between neutron beam origin and moderator center)

Neutron Beam Origin(2)

- $\bar{I}_{int} (= \frac{1}{N} \int_{\theta \min}^{\theta \max} I_{int}(\theta) d\theta)$ increases with the X value.
- $\bar{I}_{int}(X = 25mm) = 0.97 \times \bar{I}_{int}(X = 46mm)$
- To avoid neutrons from PM,

X=25mm is adopted rather than X=46mm.

(with X=46mm, neutrons from PM may increase background at large θ .)

Summary

 Neutronic design of coupled H₂ moderator reaches completion.

 More studies will be carried out to give suggestions for engineering design.