Evaluation of Nuclear Heating, DPA and Induced Radioactivity in Main Components

- Overview calculation methods & results
- Give a base for designing main components which are subjected to nuclear processes

Fujio MAEKAWA, Masahide HARADA, Makoto TESHIGAWARA, Tetsuya KAI (JAERI), Yoshiaki KIYANAGI (Hokkaido Univ.)

Nuclear Heating: Code & Data

Nuclear Heating: Results

Nuclear heat density distributions @ 1 MW

Nuclear Heating: Results

Nuclear heat density distributions @ 1 MW

Nuclear Heating: Results

• Heat Load [kW]

 Target	533.9
 Target	533.9

- Reflector 196.4
- Reflector plug 11.0
- Moderator
 - H2 4.2
 - H2O 18.9
- Proton beam window 3.1
- Water-cooled shield 94.2
- Helium vessel 28.1
- Shield ~10.0
- Total ~ 900 kW

Peak heat density [W/cm³]

_	Proton beam window	310	Inconel-718
_	Target	630	Hg
_		320	SS-316L
_	Reflector	6.0	AI
_	Moderator	3.4	AI
_		1.2	H2
_	Water-cooled shield	0.8	SS-316L
_	Helium vessel	0.2	SS-316L

Values for 1 MW @ the PBW

DPA: Code & Data

DPA: Results

• Maximum DPA for 1 MW, 5000 hr

- Proton beam window:
- Mercury target:
- Moderator:
- Reflector:
- Water-cooled shield:
- Helium Vessel:

- 4.0 Inconel-718
- 10.0 SS-316L
 - 3.0 Aluminum alloy
 - 3.5 Aluminum alloy
- ~ 0.03 SS-316L
- ~ 0.01 SS-316L

Induced Radioactivity: Code & Data

1 MW - 5000 hr. operation, 48 hr. cooling

Major radioactivity in mercury

Nuclide	Half-Life	Activity [TBq]	
H-3	12.3 y	92.0	
I-125	59.4 d	15.0	
Xe-122	20.1 h	1.3	
Xe-127	36.4 d	13.0	
Hg-194	520 y	0.3	
Hg-195g	9.9 h	94.0	
Hg-195m	41.5 h	120.0	
Hg-197g	64.1 h	1,600.0	
Hg-197m	23.8 h	230.0	
Hg-203	46.6 d	2,300.0	

³T

Cooling Water

Total tritium activity after 30 years operation.

	Activity [TBq]
Safety-hull of the target	6.10
Reflector	7.20
Target trolley	0.07
Helium vessel	5.30
Proton beam window	0.64
Moderators	4.50

Saturated activity at an exit of each cooling channel for 1 MW operation

	Half-Life [s]	Satureted Activity [MBq/cm3]			
Nuclide		Safety-hull of the target	Reflector	Proton beam window	moderators
Be-7	4.6E+06	1.20	0.19	0.26	1.10
C-10	19.3	4.70	0.38	1.20	2.60
C-11	1223	2.70	0.55	0.32	2.90
N-13	598	2.00	0.35	0.31	2.00
N-16	7.1	180.00	33.00	3.10	190.00
O-14	70.6	7.50	0.58	2.30	4.70
O-15	122	19.00	3.10	2.30	18.00

Moderators

1 MW - 10 years operation, 5 days cooling

The activation level of the decoupled and poisoned moderators are 100 times as large as that of the coupled moderator after 100 hours cooling.

The ^{110m}Ag ($T_{1/2}$ = 250 days) that is produced by the ¹⁰⁹Ag(n, γ)^{110m}Ag reaction in the Ag-In-Cd-alloy decoupler is dominant.

Activity of ^{110m}Ag: ~ 10¹⁴ Bq

Reflector

1 MW - 10 years operation, 5 days cooling

The activation level of neutron absorption liners made of the Ag-In-Cd-alloy is the largest due to 110m Ag (T_{1/2} = 250 days).

The activation level of SS-316 reflector blocks is also high. The most troublesome nuclide is Co-56, a high-energy gamma-ray emitter, produced from nickel.

--> We decided to use usual steel (nickel less) instead of stainless steel to reduce the activation level.

	Nuclide	Half-Life	Activity [TBq]
SS-316	V-48	16.0 d	35
	Cr-51	27.7 d	2200
	Mn-54	312 d	460
	Fe-59	44.5 d	80
	Co-56	77.3 d	69
	Co-58	70.8 d	340
	Mo-99	2.75 d	220
Ag-In-Cd alloy	Ag-106m	8.28 d	28
	Ag-108m	418 y	0.23
	Ag-110m	250 d	260

