The Cascade Target Design for M uon Facility

KEKY.M iyake

- Tandem target for Muon Facility
- Influence of the Muon Target
 - Beam Loss as much as 60 kW for 20mm Graphite
 - Installation of three set of Collimators
 - Maintenance/High Radiation

(Learning a lot from PSI experience)

- Tunnel Structure
- Shield Design
- MIC Magnet
- Pillow Seal
- Design of the Air Handling System
 - NO_X Production
 - Ar-41etc. Production
- Summary

Material Life Science Facility Muon Science Facility

Comparison between Tandem Type Target & Separate Facility

	Tandem Type Target	A separate Facility
		with our own Dump
Beam Sharing	Always 1 0 0 %	?%:?%
Building	Common Building	A separate Building
Crane	Common Crane	Separate Crane
	60ton for Target, Scrape	60ton for Target, Scraper
	Maintenance	Maintenance
Beam Dump	Not necessary	Required
		For hot TritiumWater
Cooling Facility	Common Facility	Separate Facility
Air Condition	Common Facility	Separate Facility
Proton Beam	1 line	Separated by Kicker Magnet
Line		2 lines
Magnet for the	Maintenance can be done	Separate maintenance
primary line	commonly	
RI Storage	Common Facility	Separate Facility
Accident	Beam Stop	Independent Operation
Scraper	Required for Neutron	Required for
	Target and Magnet	Magnet
Beam Loss	1 0 % loss at the	None but Beam sharing
	targets	?%:?%

Dedicated Design for the Tundem Muon Target

- Beam Loss as much as 60 kW for 20mm Graphite
 - Heat, DPA, Radiation
- Collimators and Target
 - How to Cool
 - Stress
- Maintenance/High Radiation
 - (Learning a lot from PSI experience)
 - (MIC Magnet,)
 - Shield
 - (Pillow Seal
 - Design of the Air Handling System
 - NO_X Production
 - Ar-41etc. Production

Heat, DPA, Radio activity

 Heatgeneration, DPA, Radioactivity production induced by proton beam and secondary particles are estim ated by NM TC/JAM, M CNP and DCHA IN-SP.

Sim ulations of graphite target

Collim ators

Beam Loss less than 10 % --> 10, & 20 mm Graphite

- No Window
- Installation of Collimators
- No Significant Effect to the Neutron Source
- n Heat generation in Collimators #1 #3.

Radiation & Ductstreaming shield structure

 From 10-m upstream to 30-m downstream ,we estimate the surface doze on the wall of 3NBT tunnel and so forth, by using MCNPX.

M 2 Line A ir Handling System

Refering to the PSI(> 1MW) System •Supplying cold air –from Maintenance Area •Retrieving –from the 0.2-0.5mFL

No Ventilation will be done, but just circulating air for a while for NM Tunnel

Sealing is important

Exit of the 2ndary Line on the wall

Sealon the top of the concrete b bcks

Polyester Sheet

Sum m ary of Cascade Target Design for M uon Facility

- Tandem TargetLayout was adopted.
- Radiation / Duct-stream ing by MCNPX
 --> Optim ization of Collim atorand Shield
- Heat, DPA & A ctivation by NM TC

--> Design of Collim atorand Target

- Maintenance from the Maintenance A rea
- Design of A ir Hand ling System

Thanks for the great experience at PSI.

Thanks for the Cooperation from 3NBT group.