Material and Life Science Experimental Facility Project Overview

Yujiro Ikeda

MLF Group Leader Japan Atomic Energy Research Institute

MLF Mission

Construction of a user facility providing advanced MW pulse neutron and muon sources for various experiments of materials and life sciences. One of large regional centers in the world.

Neutron sciences in a wide time-space

MLF Facility Layout

Consists of four major areas

3GeV Proton Beam Transport System Pulsed Spallation Neutron Source System Neutron Instruments Systems Muon Experimental Systems

Major Parameters

- 1MW (3GeV, 0.33 mA) proton beam power
- 25 Hz Repetition, < 1 m s Pulse width
- Long 3GeV p B-T line ~300 m: 1W/m beam loss -BT
- Mercury spallation target -N
- 20mm carbon muon production target -M
- Proton beam cascade configuration through M-N in one building sharing the experimental hall and utilities
- *Note that 5pulses/3.4 sec are delivered to 50GeV ring

Budget profile for JSNS and major milestones

Relative Cost Fractions of Major Components of JSNS

MLF Construction Schedule

Calendar Year	2001	2002	2003	2004	2005	2006	2007	
3GeV beam transport					Beam Commissio	ning		
Tunnel & Utility		Design	Const	ruction	From	From SGev PS		
Magnet, P.S., Devises	D	esign	B&A	Fabrication		Installation and Test	n Oper t Star	ation t for
Neutron Source Shield, Vessel, Shutter, Liners		Design	B&A Fa	abrication, Ins	tall./Test	Pre-Op	User eration	∍rs
Hg Target, Moderators, Remote Handling sys.		Design Fabrication, Install./Test		st				
Territore Transming 555								
Neutron Instruments	Proposals	als Selection / Design		Fabrication, Install		all./Test		
							¥	
Muon Target			Design	Fa	brication, Inst	all./Test		
Conventional Facility		Design	esign Construction			I		

Design principle

*As many beam lines as possible (Max. 23 lines with independent shutters)
*Simple and robust structure
*High neutron performance of target/moderator system based on detailed neutronics design
*Competitiveness with other major sources with full advantages of the repetition rate of 25 Hz and the 1MW beam power

Minimizing cost and maximizing overall facility performance

Performance of neutron source

Neutron instrumentation and users

- Instruments design team in the project consisting mainly of the Instrument group of MLFG was organized and started an active work.
- The project team identified 10 important instruments to be installed at an early stage of the facility operation.
- User instrumentation group has been organized besides the instruments design team in the project to encourage the external proposals.
- The advisory committee to the project director was organized, in which the priority of neutron instrument and a general rule for adopting the proposals has been discussed.
- Call for LOI was announced out.

Proton beam transport line

- long and complicated beam line
 264 m long main tunnel and 4.8 m elevation
 56 m long beam line in experimental facility
 cascade target system
 - muon production target in proton beam line upstream of neutron source

1.1

Beam optics and profiles

 beam emittance (e) = 81p mm.mrad (beam core) 324p mm.mrad (max. beam halo)

 $Dp/p < \pm 1.0 \%$

 strong focusing on muon production target and rectangular beam profile on neutron source

Highlights of the facility design

1 MW mercury target system (Cross flow, safety hull).

Three supercritical hydrogen cold moderators (assuming 100 % para state of H2).

Parallel H2 flow with a bypath channel using one circulator. Independent moderator remote handling with an inner and an outer reflector plugs.

Wide extraction angle coverage of the coupled moderator for 11 instruments.

1eV decoupling energy with AIC de-coupler and AIC liners High resolution poisoned moderator with Cd poisoning material. Minimized iron materials with positive use of magnetite heavy concrete shielding, resulting in cost saving.(Precise Model Calc.) 23 independent neutron shutter systems

Mercury target design

Characteristic Advantage of 1MW Pulse Neutron Source and Strategic Utilization

- New, challenging idea to realize the most powerful coupled cold moderator in terms of the time integrated neutron flux and peak intensity, which are superior to those of SNS of (2MW, 60Hz) by factors of 1.5 and 3, respectively
- One coupled, and two decoupled moderators are located separately, below and above the Hg target to avoid interference of each, resulting in high neutron performance.
- To meet requirements from users, a wide and high efficient neutron beam extraction from the coupled moderator is designed.

Angle sharing scheme

- Long-lived decoupler material (Ed=1eV), small tail pulse peak
- 5. Optimizing moderator shapes, and reflector configuration to mitigate effects at large angles. The angle is within 7.5 ° for poised

moderator.

Moderator Design

Three supercritical H2 moderator systems (coupled, de -coupled, de-coupled poisoned)

Reflector Assembly Design

Independent removal of moderator

Parallel circulation of H2 cryogenics

Beryllium inner and SS outer reflectors instead of lead ref.

Heavy water cooled

Be reflectors are embedded i the moderator containers to reduce reflector missing

Light water pre-moderator.

Neutron target station design

Shielding performance evaluation by MCNPX

R&Ds

Hg pitting damage issue

AIC HIP test

ASTE Collaboration at AGS/BNL Mercury Target Pressure Wave Cavitaion Damage Bulk Shielding Spallation Neutron Production JAERI-USDOE Collaboration at LANSCE/LANL Beam-Line Shielding Experiments

Conventional facility design

Facility safety

To observe the Japanese regulations

Law concerning Prevention from Radiation	Public exposure :				
Hazards due to Radio-Isotopes, etc.	 Skyshine < 50 mSv/yr 				
	 Radioactive gas and liquid release 				
	Worker radiation < 12.5 mSv/hr (~1 mSv/hr)				
	Radiation waste (Target, Moderator, etc.)				
High Pressure Gas Safety Law	Hydrogen safe				
Building Standard Law	Earthquake-resistant construction				
	1				
Radiation protection	ALARA, Defense in Depth				
Hazard material protection	Confinement of radioactive mercury				
Public exposure	Source term analysis of				
Others	Human factor (Procedure and training)				
	Maintenance				

Quality assurance

Accidental scenario for release of radioactive mercury Preliminary results of public exposure at site boundary

5.8 mSv (Recovery from accident in 10 days)

Major milestones

Design Manual: Detailed Design: Safety Report: Technical Review: The first B&A: Fabrication and Procurement: Installation and Testing: Beam Acceptance of MLF:

Conventional Facility Design:Mar. 2003Construction Start:Apr. 2003Completion of CF:Mar. 2006First beam acceptance:Mar. 2007

- ~ Dec. 2002
- ~ Mar. 2003
- ~ Dec. 2002
 - **Oct. 2002**
 - Nov. 2002
 - Dec. 2002 ~ Dec. 2006
 - Apr. 2006 ~ Mar. 2007
 - Mar. 2007

Designs have been extensively in progress.

Specific technical designs are to be presented.

Comments, advises, and recommendations which will be generated in the N-TAC, are to be factored into the design and construction scheme of the JSNS.