

ACCELERATOR OVERVIEW Japan Proton Accelerator Research Complex (J-PARC)

Yoshi Yamazaki Group Leader, JAERI/KEK Joint Accelerator Group

J-PARC Neutron Technical Advisory Committee (NTAC) Meeting JAERI/TOKAI, October 28th to 30th, 2002

Configuration of the Accelerator Complex

ΠΠ

ΠΠ

Additionally 32 FTE's are from industries and from post-docs

~ 50-GeV, 15 µA, slow and fast extraction for nuclear and particle physics experiments

~ 1 GeV, 1 MW, <1 μs, ~ 25 Hz
for spallation neutron source

Features of the Accelerator Complex

- The cascade system is suitable for the several-ten GeV machine.
- **The prototype is the present KEK-PS.**
- The booster Rapid-Cycling Synchrotron (RCS) can also be used for the Neutron Souce. This may be more powerful than the accumulator ring (AR) system with a full-energy linac.
- The present project is a kind of scale up of the KEK-PS by a factor of ten.

RCS Advantage vs AR

- **Lower Beam Current**
- Lower Injection Energy
- Higher Injection Beam Loss is allowed.

(If one increases the beam energy by a factor of 7.5 times, the allowed beam loss during the injection is 7.5 times as high as that for AR with the same beam power.)

Perhaps immune against the e-p instability

RCS Disadvantage vs AR

RCS Challenges

- Lower injection energy in turn implies higher space charge effect. Large aperture magnets are required, giving rise to large fringing fields.
- Powerful RF accelerating system
- Ceramics vacuum chamber with RF shield to avoid the eddy current effect
- Stranded coil to overcome the eddy current effect on the magnet coils.
- Precise magnet field tacking is necessary for each family of magnets

Proton linac

RCS Configuratiion

Emittance Growth Simulation in RCS (400 MeV injection)

Beam Loss Distribution

Injection Scheme to 50-GeV Ring

ΠΠ

P1 - P2(injection)	0.14 a
P2 - P3(acceleration)	1.9 a
P3 - P4(extraction)	0.7 a
P4 - P5	0.9 a
total	3.64 a
slow extraction of 30GeV	
duty factor	0.20
average current	1.SµA

Construction and Commissioning

Year Item	2001	2002	2003	2004	2005	2006	2007	2008	2009
Linac Bldg					Power 0	.1% 1%	1	0% ~100	%
Linac Accel			Constructio	on Ir	stallation	Beam Tes	t I		
3GeV Bldg					Pov	er 0,1% 1	%	0% ~100	%
3GeV Accel			Constr	uction	Installa	tion Bear	n Test		
3GeV BT					Installat	ion	Beam Tes	t	
3GeV Exp Bldg									
3GeV Exp Fac				Constru	ction	Installatio		n lest	
50GeV Bldg		-				Power 0	1% 1%	10% ~10	0%
50GeV Accel				Construct	on Ir	stallation	Beam Tes	t	
50GeV Exp Bldg				Cons	truction	Installati	on Bear	n Test	
50GeV Exp Fac							Test Perio	d Open to	o Users
						Start	Usage	- open v	

Linac Schedule Milestones

- **JFY01:** Most components for Linac and Bldg. ordered
- Mid JFY02: Remaining components for Linac to be ordered
- Summer JFY04 : Bldg. to be completed, Installation to be started
- March JFY05: Commissioning to be started
- Mid JFY 06: Beam injection to RCS to be started

RCS Schedule Milestones

- Mid JFY02: Half of components and Bldg. to be ordered
- Early JFY03: Remaining half of components to be ordered
- March JFY04 : Bldg. Completed, Installation to be started
- Mid JFY06: Beam injection to RCS, that is, RCS commissioning to be started
- March JFY06: Beam extraction to the Neutron Source and to the 50-GeV Ring

Coil of Electromagnet in Drift Tube

The coil is electroformed and Wire-cutted.

Cs-seeded Ion Source

30mA RFQ

The 30mA RFQ installed in the test area

Inside view of the RFQ stabilized with PISLs

DTL Tank 1 with DT's Installed

Conditioning of SDTL1

Magnetic Alloy

* **RF behaviour at high field** μ**Qf (shunt.imp.) vs. B**_{rf}

Novel RF Cavity with Finemet

 High Permeabiility Magnetic Alloy

 Highest Accelerating Field Gradient (50kV/m Accomplished

FINEMET-loaded Accelerating RF Cavity

Rectangular Ceramics Vacuum Chamber

Circular Ceramics Vacuum Chamber

RF shields were electroformed. Main bodies were metalized and silver-brazed.

R&D Dipole Magnet for 3-GeV Synchrotron

Repetition rate : 25[Hz], Core length : 1.0[m], Max. field : 1.1[T] (at 3GeV) , Min. field : 0.27[T] (at 400MeV)

The accelerator scheme for the high-intensity proton accelerator facility project in Japan is unique as follows.

- The RCS scheme is chosen for the MW proton machine producing the pulsed spallation neutrons.
- The MR is attempting to realize the MW proton machine also for the several ten GeV region.
- Not only for the scientific and engineering output, but this accelerator complex will also open up the new era for the field of the accelerator technology.
- Together with the success of the SNS and/or ESS projects, this project will contribute a lot to the future several or ten MW accelerators, which are really required for the 21st centuary science and technology, including the biology, the nuclear and particle physics, the energy development, the environmetal science/technology and so forth.