実験報告書様式(一般利用課題·成果公開利用)

MLF Experimental Report	提出日 Date of Report
課題番号 Project No.	装置責任者 Name of responsible person
2017A0072	Toshiya Otomo
実験課題名 Title of experiment	装置名 Name of Instrument/(BL No.)
Local Structure and Magnetic Properties of Layered pnictides	BL 21
実験責任者名 Name of principal investigator	実施日 Date of Experiment
Takafumi Yamamoto	2017/4/8-9, 6/9-10
所属 Affiliation	
Kyoto University	

試料、実験方法、利用の結果得られた主なデータ、考察、結論等を、記述して下さい。(適宜、図表添付のこと)

Please report your samples, experimental method and results, discussion and conclusions. Please add figures and tables for better explanation.

1. 試料 Name of sample(s) and chemical formula, or compositions including physical form.

 M_2ZnSb_{3} , (M = Zr, Hf)

2. 実験方法及び結果(実験がうまくいかなかった場合、その理由を記述してください。)

Experimental method and results. If you failed to conduct experiment as planned, please describe reasons.

We obtained a pair distribution function (PDF) of M_2 ZnSb₃ (M =Zr, Hf) by a Fourier transform of neutron total scattering data collected at NOVA. The following figure represents the PDF patterns of M_2 ZnSb₃ as a function of distance, r. Due to the close value of neutron cross section between Zr (7.16) and Hf (7.7), the two PDF curves have essentially similar characteristics, apart from slight difference of each lattice parameter. However, a significant deviation is found around $r \sim 8.6$ Å, which is almost equivalent to the interlayer distance in M_2 Zn₂Sb₃. This implies that the stacking patterns of ZnSb layer is distinct from each other. We need further analysis of the PDF data to determine the real local structure of these two compounds.

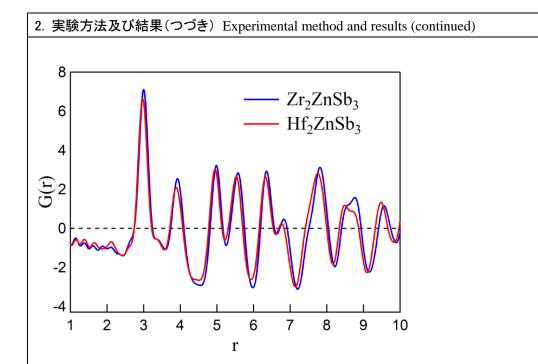


Figure. Neutron PDF, G(r), as a function of distance, r, collected at NOVA