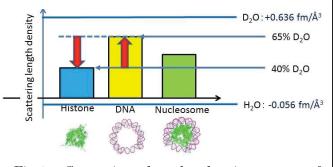
実験報告書様式(一般利用課題・成果公開利用)

(※本報告書は英語で記述してください。ただし、産業利用課題として採択されている方は日本語で記述していただいても結構です。)

CROSS Experimental Report	承認日Date of Approval 2015/9/15 承認者Approver Jun-ichi Suzuki 提出日Date of Report 2015/9/1
課題番号 Project No.	装置責任者 Name of responsible
2014A0060	person
実験課題名 Title of experiment	Dr. Shin-ichi Takata
Structural Analysis of Functional Nucleosome with Variant Histone	装置名 Name of Instrument/(BL No.)
実験責任者名 Name of principal investigator	TAIKAN/BL-15
Masaaki Sugiyama	実施日 Date of Experiment
所属 Affiliation	04/12/2014-07/12/2014
Research Reactor Institute, Kyoto University	


試料、実験方法、利用の結果得られた主なデータ、考察、結論等を、記述して下さい。(適宜、図表添付のこと) Please report your samples, experimental method and results, discussion and conclusions. Please add figures and tables for better explanation.

1. 試料 Name of sample(s) and chemical formula, or compositions including physical form.	
H2A nucleosome (canonical): DNA and histone (protein) complex in 0% D $_2$ O, 3mg/mL, 0.5mL	
H2A nucleosome (canonical): DNA and histone (protein) complex in 65% D ₂ O, 3mg/mL, 1.0mL	
H2A nucleosome (canonical): DNA and histone (protein) complex in 100% D $_2$ O, 3mg/mL, 1.0mL	
H2A.Z1 nucleosome (variant): DNA and histone (protein) complex in 0% D ₂ O, 3mg/mL, 0.5mL	
H2A.Z1 nucleosome (variant): DNA and histone (protein) complex in 65% D ₂ O, 3mg/mL, 1.0mL	
H2A.Z1 nucleosome (variant): DNA and histone (protein) complex in 100% D ₂ O, 3mg/mL, 1.0mL	

2. 実験方法及び結果(実験がうまくいかなかった場合、その理由を記述してください。)

Experimental method and results. If you failed to conduct experiment as planned, please describe reasons.

SANS with contrast variation method, CV-SANS, is a powerful technique to observe the partial structures of complex materials consisting of domains/molecules with different scattering length densities, SLDs. The scattering intensity from the solution is proportional to the square of the scattering contrast between solute and solvent, $\Delta\beta = (\beta \text{solute} - \beta \text{solvent})^2$, where βsolute and $\beta \text{solvent}$ are the SLDs of the solute and solvent,

respectively. , Nucleosomes consists of different biomolecules which have different SLDs: The SLDs of histones and DNA are 0.221 (fm/Å³) and 0.394 (fm/Å³), respectively. Here, the SLDs of H₂O and D₂O are -0.056 (fm/Å³) and 0.636 (fm/Å³). Therefore, in a 65% D₂O solution, because the SLD of the DNA is matched to that of the 65% D₂O solvent, we can erase the scattering due to DNA and selectively observe the structure of

2. 実験方法及び結果(つづき) Experimental method and results (continued)

the histone octamer in a nucleosome. Moreover, in a 40% D₂O solution, we selectively observe the DNA by the same concept of contrast matching with the exchange of the roles.

Figure 2 shows scattering profiles of canonical and variant nucleosomes in 100% D_2O solution. There was no upturn in the low *q*-region, indicating that the prepared samples were no aggregation and monodispersed. The contrast was checked with the root of the zero-angle scattering intensities: $\Delta \rho$ -I(0)^{1/2}. Figure 3 shows I(0)^{1/2} as a function of D_2O ratio. The matching point of the sample is 52% D_2O as expected from the calculation. It means that, in 65% D_2O solution, we can observe histone structure selectively. as expected. The further analysis is in progress.

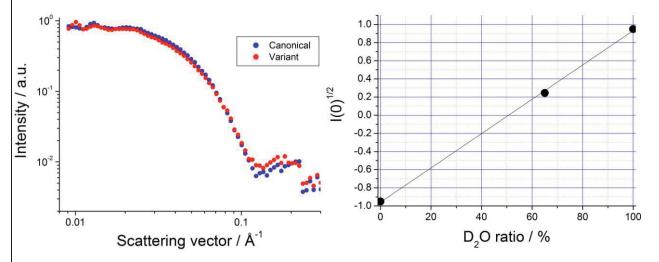


Fig.2. Scattering profiles of nucleosomes in $100\% D_2O$ solution.

Fig.3. Zero-angle scattering intensity as a function of D_2O ratio in solution.