実験報告書様式(一般利用課題·成果公開利用)

MLF Experimental Report	提出日 Date of Report
	2013.03.22
課題番号 Project No.	装置責任者 Name of responsible person
2012B0037	神山 崇
実験課題名 Title of experiment	装置名 Name of Instrument/(BL No.)
ystal- and domain-structure analyses of Ti-based and Nb-based	高分解能粉末中性子回折装置
perovskite ferroelectric oxides	SuperHRPD
実験責任者名 Name of principal investigator	実施日 Date of Experiment
Yuji Noguchi	2013.02.27-03.01
所属 Affiliation	
RCAST, The University of Tokyo	

試料、実験方法、利用の結果得られた主なデータ、考察、結論等を、記述して下さい。(適宜、図表添付のこと) Please report your samples, experimental method and results, discussion and conclusions. Please add figures and tables for better explanation.

ubles for better explanation.
1. 試料 Name of sample(s) and chemical formula, or compositions including physical form.
ペロブスカイト型強誘電体粉末
(1-x)(Bi _{0.5} Na _{0.5})TiO ₃ -xBaTiO ₃
x = 0, 0.04, 0.06, 0.07, 0.08, 0.09, 0.10, 0.12

2. 実験方法及び結果(実験がうまくいかなかった場合、その理由を記述してください。)

Experimental method and results. If you failed to conduct experiment as planned, please describe reasons.

【諸言】環境問題の観点から、鉛系強誘電・圧電材料を代替可能な非鉛材料の開発が喫緊の課題となって いる。有望な非鉛材料である(1-x)(Bi_{0.5}Na_{0.5})TiO₃-xBaTiO₃ [(1-x)BNT-xBT]は、室温で菱面体晶(空間群 R3c)である BNT と、正方晶(空間群 P4mm)である BT の固溶体であり、構造相境界(MPB)を形成する x = 6-7%の組成において良好な圧電特性を示す^[1,2]。最近のセラミックスにおける研究で、MPB 近傍 (5% $\leq x \leq 11$ %)に正方晶リラクサー相(空間群 P4bm)が存在し、分極処理による不可逆な相転移挙動が 圧電歪み特性の向上に寄与することが報告された^[3]。その一方で、粒界などの影響がなく材料の本質的 な特性の評価が可能な単結晶における報告例があるが、高品質な BNT-BT 結晶の育成が困難なために、 系統的な特性評価はこれまで行われて来なかった。本研究では、高圧酸素下で育成した高品質な BNT-BT 単結晶^[4]を用いて、結晶の電界誘起歪み特性評価および構造解析を行い、物性と結晶構造との 関係性を明らかにすることを目的としている。

【実験】高圧酸素雰囲気(Po₂ = 0.9 MPa)における溶液引き上げ(TSSG)法^[4,5]を用いて、組成 x の異なる BNT-BT 単結晶(x = 9%, 12%)を得た。得られた結晶の<100>方向における電界誘起歪みをレーザー変 位計により評価した。SPring-8(BL02B1)において放射光 X 線単結晶構造解析^[6]を行い、電界印加により 誘起される結晶格子歪みを評価した。さらに、ビーズミルを用いた混合を行うことで高品質 BNT-BT 粉末(x = 0%, 4%, 6%, 7%, 8%, 9%, 10%, 12%)を作製し、J-PARC における中性子回折実験により結

2. 実験方法及び結果(つづき) Experimental method and results (continued)

晶構造解析を行った。

【結果および考察】図1に、BNT-BT単結晶(x = 9%, 12%)の<100>方向における電界誘起歪み(*S-E*)特性を示す。x = 12%の結晶は bipolar の電界印加下で明瞭なバタフライ曲線を示した[図1(a)]のに対し、x = 9%の結晶は正方向への大きな歪みのジャンプを伴う *S-E*曲線を示した[図1(b)]。unipolar の電界印加下において[図1(c)]、x = 12%の結晶は直線的な圧電性歪みを示した。低電界領域(E < 5 kV/cm)の傾きから見積もった圧電歪み定数 d^* は 170 pm/V であり、 d_{33} メータにより測定した d 値(190 pC/N)と同程度であった。一方 x = 9%の結晶は unipolar の電界下において[図1(c)]、bipolar の測定と同様に歪みのジャンプを伴う *S-E* 特性を示した。*S-E* 曲線(E < 5 kV/cm)から見積もった d^* 値は 30 pm/V と小さかったものの、最大電界 $E_{max} = 100$ kV/cm における最大歪み $S_{max} = 1.0\%$ と、大きな歪み特性を示した。

図 2(a)に、*in-situ* 単結晶 X 線構造解析により得られた、<100>方向の電界 ($E_{in-situ}$)印加下における BNT-BT 単結晶 (x = 9%, poled 結晶)の格子定数を示す。低 $E_{in-situ}$ 領域(≤ 10 kV/cm)においては比較的小さな正方 晶歪み (c/a < 1.002)を示したのに対し、高 $E_{in-situ}$ 領域(≥ 20 kV/cm)では大きな c/a(>1.01)を示した。結 晶 c 軸長変化から算出された[001]方向の電界誘起格子歪み($S_{lattice}$)は、結晶の S-E 特性の実測値[S_{bulk} , Fig. 1(c)]と良い一致を示した[Fig. 2(b)]。以上の結果から、x = 9%の結晶で測定された大きな歪み特性 の起源は、P4bm 相 (c/a:小)と P4mm 相 (c/a:大)との間の可逆的な電界誘起相転移であることを実証し た。

また、中性子回折実験の解析結果から、BNT-BT(x = 7%)粉末は正方晶 P4bm 単相であることが明らか になった。以上により、BNT-BT 系材料の歪み特性の設計に、MPB 領域における P4bm 相を介した電界 誘起相転移(P4bm \leftrightarrow P4mm)が利用できる可能性を示した。

【参考文献】[1] T. Takenaka et al.: Jpn. J. Appl. Phys. **30** (1991) 2236. [2] W. Jo et al.: J. Appl. Phys. **109** (2011) 014110. [3] C. Ma et al.: J. Am. Ceram. Soc. **94** (2011), Phys. Rev. Lett. **109** (2012) 107602. [4] H. Onozuka et al.; Jpn. J. Appl. Phys. **50** (2011) 09NE07. [5] Y. Kitanaka et al.: Jpn. J. Appl. Phys. **49** (2010) 09MC06, Ferroelectrics **414** (2011) 24, Jpn. J. Appl. Phys. **51** (2012) 09LD08. [6] C. Moriyoshi et al.: Jpn. J. Appl. Phys. **50** (2011) 09NE05.

Fig. 2. (a) Relationship between lattice parameters (*a* and *c*) and $E_{in-situ}$ (increasing) along the <100> axis of BNT–BT (x = 9 %) single crystals. (b) $E_{in-situ}$ -induced strain of the crystal lattice (S_{lattice}) obtained from the crystal structure analyses [Fig. 2(a)] and the strain properties measured for the bulk crystals (S_{bulk}) [see Fig. 1(c)].