実験報告書様式(プロジェクト利用)

MLF Experimental Report	提出日 Date of report
	2013/09/03
実験課題番号 Project No.	装置責任者 Name of responsible person
2012P0801	Kenichi OIKAWA
実験課題名 Title of experiment	装置名 Name of Instrument/(BL No.)
Development and application of on-beam SEOP based ³ He spin filter at BL10	NOBORU / BL10
実験責任者名 Name of principal investigator	利用期間 Dates of experiments
Takayuki OKU	2012.10.20 21:00 - 2012.10.24 9:00
所属 Affiliation	2012.11.22 21:00 - 2012.11.24 21:00
J-PARC Center	2013.02.14 09:00 - 2013.02.16 21:00

1. 研究成果概要(試料の名称、組成、物理的・化学的性状を明記するとともに、実験方法、利用の結果得ら れた主なデータ、考察、結論、図表等を記述してください。

Outline of experimental results (experimental method and results should be reported including sample information such as composition, physical and/or chemical characteristics.

For expanding measurable neutron energy region up to epithermal neutrons in polarized neutron experiments [1], we developed the portable Polarized ³He Spin Flipper (PHSF), constructed a neutron spin analysis system with the developed PHSFs at the BL10, carried out its feasibility test, and attempted to visualize a magnetic field generated by a Rectangular Coil (RC). Fig. 1 shows the experimental setup at the BL10. The portable PHSF consisted of a cylindrical glass cell filled with ³He gas which was installed in an oven, and a Solenoid Coil (SC) of 20 cm in diameter and 30 cm long for holding the ³He polarization. They were brought into the beam line after polarizing ³He gas sufficiently by our SEOP system. In Fig. 1, pulsed neutron beams from the spallation neutron source transmitted along the *z* axis through a PHSF-1 for polarizing neutrons, a sample area, a PHSF-2 for analyzing neutron spins, and were counted by a 2D-PSND consisting of a neutron scintillator and photomultiplier tube. In attempting to visualize the magnetic field, the RC of $50 \times 5 \times 18$ mm³ size are placed at the sample area so as to apply the magnetic field H_R of the RC along to the *x* axis. The cells containing ³He gases of 17 and 11 atm·cm thicknesses were installed in the PHSF-1 and the PHSF-2. The ³He spin polarizations P_1 and P_2 of the PHSF-1 and PHSF-2 were monitored by the NMR signal V_1 and V_2 .

1

1. 研究成果概要(つづき) Outline of experimental results (continued).

Figure 2 (A) A_k as a function of neutron wave length λ without the RC.
(B) P₂ deduced by substituting the A_k and P₁≈0.45 for Eq. (1)

The spin analyzing ability in Fig. 1 was evaluated by measuring a neutron spin asymmetry defined as

 $A_{\rm k} = (T_+ - T_-) / (T_+ + T_-) = P_{\rm n} \tanh(N_2 \sigma l_2 P_2), \quad (1)$

where T_+ (T_-) denote the neutron transmittance with its spin *s* parallel (antiparallel) to the ³He nuclear spin I_1 of the PHSF-1, σ is a neutron absorption cross section of ³He, N_2 and l_2 are a number density and thickness of the PHSF-2. The P_n is the neutron polarization after passing through the PHSF-1 which can be determined by the P_1 . Fig. 2 (A) represents the A_k as a function of neutron wave length λ without the RC. Fig. 2 (B) represents the P_2 deduced by substituting the A_k in Fig. 2 (A) and $P_1 \approx 0.45$ obtained from the NMR signal V_1 for Eq. (1). The P_2 is almost constant as expected, but it decreases more than $\lambda > 5$ Å by the background with decreasing neutron transmittance. While the A_k with the RC is redefined as

 $A'_{k} = (T_{+} - T_{-}) / (T_{+} + T_{-}) = P_{n} \tanh(N_{2} \sigma l_{2} P_{2}) \sin(\gamma_{n} H_{R} t), \quad (2)$

where γ_n and *t* is a neutron gyromagnetic ratio and a time of the *s* rotation around the H_R direction which is named a Larmor precession. Fig. 3(A) and (C) represent neutron 2D images measured around the $\lambda \approx 2.7$ Å and $\lambda \approx 3.6$ Å, where the beam cross section is about 10×15 mm² and the neutron transmittance is T_+ . Fig. 3(B) and (D) denote the projection components of T_+ in Fig. 3 (A) and (C) to the *y* axes. The areas enclosed by broken lines in Fig. 3 (A) and (C) denote inner parts of the RC where the H_R is applied along to the *x* axis. Difference between the T_+ in the inner part of the RC in Fig. 3 (B) and that in Fig. 3 (D) suggests to measure the *s* rotation effects based on the A'_k . Fig. 4 (A), (B) and (C) represent the T_+ , T_- and A'_k as a function of λ at the inner part of the RC. In Fig. 4 (A) and (B), the T_+ and T_- are divided by the neutron transmittance without the RC. From the A'_k in Fig. 4 (C), the value of 1.8 Å/turn can be obtained as the *s* rotation period. Its value corresponds to $H_R \approx 4.2$ mTesla in Eq. (2), and it is consistent with the H_R measured by a magnetic sensor directly.

These preliminary results suggest that our apparatus has the sufficient spin analyzing ability and can visualize the magnetic field with the λ range from 0.5 to 5 Å. The measurable λ range will be expanded to both sides of the lower and upper by keeping the P_1 and P_2 highly and stable.

必要に応じて、A4 サイズの用紙に続きを記入して下さい。 Please use A4-size papers for further reporting, if necessary.

必要に応じて、A4 サイズの用紙に続きを記入して下さい。 Please use A4-size papers for further reporting, if necessary.