	提出日 Date of report 2013/09/03
実験課題番号 Project No．	装置責任者 Name of responsible person
2012P0801	Kenichi OIKAWA
実験課題名 Title of experiment	装置名 Name of Instrument／（BL No．）
Development and application of on－beam SEOP based ${ }^{3} \mathrm{He}$ spin filter at BL10	NOBORU／BL10
実験責任者名 Name of principal investigator	利用期間 Dates of experiments
Takayuki OKU	2012．10．20 21：00－2012．10．24 9：00
所属 Affiliation	2012．11．22 21：00－2012．11．24 21：00
J－PARC Center	2013．02．14 09：00－2013．02．16 21：00

1．研究成果概要（試料の名称，組成，物理的•化学的性状を明記するとともに，実験方法，利用の結果得ら れた主なデータ，考察，結論，図表等を記述してください。

Outline of experimental results（experimental method and results should be reported including sample information such as composition，physical and／or chemical characteristics．
For expanding measurable neutron energy region up to epithermal neutrons in polarized neutron experiments ［1］，we developed the portable Polarized ${ }^{3}$ He Spin Flipper（PHSF），constructed a neutron spin analysis system with the developed PHSFs at the BL10，carried out its feasibility test，and attempted to visualize a magnetic field generated by a Rectangular Coil（RC）．Fig． 1 shows the experimental setup at the BL10．The portable PHSF consisted of a cylindrical glass cell filled with ${ }^{3} \mathrm{He}$ gas which was installed in an oven，and a Solenoid Coil（SC） of 20 cm in diameter and 30 cm long for holding the ${ }^{3} \mathrm{He}$ polarization．They were brought into the beam line after polarizing ${ }^{3} \mathrm{He}$ gas sufficiently by our SEOP system．In Fig．1，pulsed neutron beams from the spallation neutron source transmitted along the z axis through a PHSF－1 for polarizing neutrons，a sample area，a PHSF－2 for analyzing neutron spins，and were counted by a 2D－PSND consisting of a neutron scintillator and photomultiplier tube．In attempting to visualize the magnetic field，the RC of $50 \times 5 \times 18 \mathrm{~mm}^{3}$ size are placed at the sample area so as to apply the magnetic field $\boldsymbol{H}_{\mathrm{R}}$ of the RC along to the x axis．The cells containing ${ }^{3} \mathrm{He}$ gases of 17 and $11 \mathrm{~atm} \cdot \mathrm{~cm}$ thicknesses were installed in the PHSF－1 and the PHSF－2．The ${ }^{3} \mathrm{He}$ spin polarizations P_{1} and P_{2} of the PHSF－1 and PHSF－ 2 were monitored by the NMR signal V_{1} and V_{2} ．

Figure 1 Experimental Setup with the developed PHSFs at the BL10

Figure 2 （A）A_{k} as a function of neutron wave length λ without the RC．
（B）P_{2} deduced by substituting the A_{k} and $P_{1} \approx 0.45$ for Eq．（1）

The spin analyzing ability in Fig． 1 was evaluated by measuring a neutron spin asymmetry defined as

$$
\begin{equation*}
A_{\mathrm{k}}=\left(T_{+}-T_{-}\right) /\left(T_{+}+T_{-}\right)=P_{\mathrm{n}} \tanh \left(N_{2} \sigma l_{2} P_{2}\right) \tag{1}
\end{equation*}
$$

where $T_{+}\left(T_{-}\right)$denote the neutron transmittance with its spin \boldsymbol{s} parallel（antiparallel）to the ${ }^{3} \mathrm{He}$ nuclear spin \boldsymbol{I}_{1} of the PHSF－1，σ is a neutron absorption cross section of ${ }^{3} \mathrm{He}, N_{2}$ and l_{2} are a number density and thickness of the PHSF－2．The P_{n} is the neutron polarization after passing through the PHSF－1 which can be determined by the P_{1} ． Fig． 2 （A）represents the A_{k} as a function of neutron wave length λ without the RC．Fig． 2 （B）represents the P_{2} deduced by substituting the A_{k} in Fig． $2(\mathrm{~A})$ and $P_{1} \approx 0.45$ obtained from the NMR signal V_{1} for Eq．（1）．The P_{2} is almost constant as expected，but it decreases more than $\lambda>5 \AA$ by the background with decreasing neutron transmittance．While the A_{k} with the RC is redefined as

$$
\begin{equation*}
A^{{ }_{k}}=\left(T_{+}-T_{-}\right) /\left(T_{+}+T_{-}\right)=P_{\mathrm{n}} \tanh \left(N_{2} \sigma l_{2} P_{2}\right) \sin \left(\gamma_{\mathrm{n}} H_{\mathrm{R}} t\right) \tag{2}
\end{equation*}
$$

where γ_{n} and t is a neutron gyromagnetic ratio and a time of the \boldsymbol{s} rotation around the $\boldsymbol{H}_{\mathrm{R}}$ direction which is named a Larmor precession．Fig． $3(\mathrm{~A})$ and（C）represent neutron 2 D images measured around the $\lambda \approx 2.7 \AA$ and $\lambda \approx 3.6 \AA$ ，where the beam cross section is about $10 \times 15 \mathrm{~mm}^{2}$ and the neutron transmittance is T_{+}．Fig．3（B）and （D）denote the projection components of T_{+}in Fig． 3 （A）and（C）to the y axes．The areas enclosed by broken lines in Fig． 3 （A）and（C）denote inner parts of the RC where the $\boldsymbol{H}_{\mathrm{R}}$ is applied along to the x axis．Difference between the T_{+}in the inner part of the RC in Fig． 3 （B）and that in Fig． 3 （D）suggests to measure the \boldsymbol{s} rotation effects based on the $A^{\prime}{ }_{k}$ ．Fig． 4 （A），（B）and（C）represent the T_{+}, T_{-}and $A^{\prime}{ }_{k}$ as a function of λ at the inner part of the RC．In Fig． 4 （A）and（B），the T_{+}and T_{-}are divided by the neutron transmittance without the RC．From the $A^{\prime}{ }_{k}$ in Fig． $4(\mathrm{C})$ ，the value of $1.8 \AA /$ turn can be obtained as the \boldsymbol{s} rotation period．Its value corresponds to $\boldsymbol{H}_{\mathrm{R}} \approx 4.2 \mathrm{mTesla}$ in Eq．（2），and it is consistent with the $\boldsymbol{H}_{\mathrm{R}}$ measured by a magnetic sensor directly．
These preliminary results suggest that our apparatus has the sufficient spin analyzing ability and can visualize the magnetic field with the λ range from 0.5 to $5 \AA$ ．The measurable λ range will be expanded to both sides of the lower and upper by keeping the P_{1} and P_{2} highly and stable．

必要に応じて，A4 サイズの用紙に続きを記入して下さい。
Please use A4－size papers for further reporting，if necessary．

1．研究成果概要（つづき）Outline of experimental results（continued）．

Figure 3 （A）Neutron 2D image around the $\lambda \approx 2.7 \AA$ ，（B）Projection of the T_{+}to the y axis in Fig．（A）， （C）Neutron 2D image around the $\lambda \approx 3.6 \AA$ ，（D）Projection of the T_{+}to the y axis in Fig．（C）．

Figure 4 （A）T_{+}in the RC as the function of λ ，（B）T_{-}in the RC as the function of λ ， （C）$A^{‘}{ }_{k}$ in the RC as a function of λ
［1］K．Sakai，J．Phys．：Conf．Ser．340， 012037 （2012）
必要に応じて，A4 サイズの用紙に続きを記入して下さい。
Please use A4－size papers for further reporting，if necessary．

