Letter of Intent for J-PARC 50 GeV Synchrotron

Investigation of Pion Double Charge Exchange Reaction with S-2S Spectrometer

H. Fujioka,* S. Kanatsuki, T. Nagae, and T. Nanamura Department of Physics, Kyoto University

 $\begin{array}{c} {\rm T.~Fukuda~and~T.~Harada} \\ {\it Osaka~Electro-Communication~University} \end{array}$

E. Hiyama, K. Itahashi, and T. Nishi RIKEN Nishina Center (Dated: June 27, 2016)

We will study pion double charge exchange (π^{\pm}, π^{\mp}) reactions with approximately 850 MeV (980 MeV/c) π beams at J-PARC. The ultimate goal is to search for a tetraneutron resonance state (⁴n), whose candidates have been observed in the ⁴He(⁸He, ⁸Be) reaction at RIBF. First of all, an analog transition, the ¹⁸O(π^{+}, π^{-})¹⁸Ne (g.s.) reaction, will be investigated at the existing K1.8 beamline with the S-2S spectrometer. It will be an important step toward a non-analog transition, the ⁴He(π^{-}, π^{+})⁴n reaction, with much smaller cross section.

 $^{^*}$ fujioka@scphys.kyoto-u.ac.jp

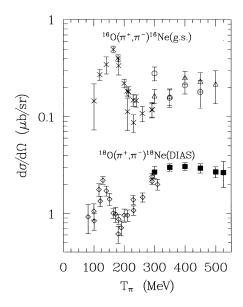


FIG. 1. Excitation functions at $\theta = 5^{\circ}$ for a non-analog transition of $^{16}O(\pi^{+}, \pi^{-})^{16}Ne$ (g.s.) and an analog-transition of $^{18}O(\pi^{+}, \pi^{-})^{18}Ne$ (DIAS). Taken from Ref. [7].

I. INTRODUCTION

Recent observation of a possible tetraneutron resonance in the 4 He(8 He, 8 Be) reaction at RIBF [1] raises a challenging question concerning the strength of three-nucleon or four-nucleon force. In order to account for the energy of the tetraneutron state $(0.83 \pm 0.65(\text{stat}) \pm 1.25(\text{syst}) \,\text{MeV})$ relative to the 4n threshold, it has been pointed out that remarkably strong I = 3/2 three-nucleon force, which has a sizable impact on the mass-radius relation of neutron stars through the nuclear Equation of State, may be needed [2]. Therefore, it is of pressing importance to confirm (or discard) the existence of such an exotic four-neutron system, by means of a measurement independent from the existing result.

For this purpose, a different reaction, i.e. a pion double charge exchange (pion DCX) reaction, for populating a tetraneutron state is proposed in another Letter of Intent [3]. As the formation cross section will be of the order of nb/sr at most, the HIHR (High-Intensity High-Resolution) beamline at an extended Hadron Experimental Facility (in a planning stage) will be the most suitable place to investigate such an exotic system. The beam energy will be 850 MeV, at which a DCX cross section for an analog transition which does not change the isospin (I) between the initial and final nuclides ($|\Delta I| = 0$), e.g. $^{18}O(\pi^+, \pi^-)^{18}Ne$ (DIAS¹), will have a local maximum according to a theoretical calculation [4]. It should be noted that the $^{4}He(\pi^-, \pi^+)^{4}n$ reaction is a non-analog transition with $|\Delta I| = 2$, and it is not clear that such a behavior holds for a non-analog transition, neither theoretically nor experimentally.

Pion DCX reactions were extensively investigated at LAMPF, TRIUMF, and PSI (former SIN) [5, 6]. To our knowledge, however, the energy dependence of the DCX cross section was experimentally investigated only below 550 MeV, for both analog and non-analog transitions [7] (Fig. 1), and only theoretical calculations, e.g. Ref. [4], exist for an analog transition with incident energies above 550 MeV. Tetraneutrons were also searched for in the pion DCX reaction on ⁴He with 165 MeV π^- beam [8]. However, as shown in Fig. 2, several events in the bound region, where only a bound tetraneutron state should contribute, were observed because of imperfect rejection of π^+ decay in the spectrometer. From an experimental point of view, the use of a higher-energy π beam will enables an almost background-free measurement, in a similar way to the (π^{\pm}, K^+) reaction for Λ -hypernuclear spectroscopy.

We consider a two-step strategy for the investigation with unexplored **pion DCX reaction much above** Δ -resonance region 1) at the existing K1.8 beamline and 2) at the HIHR beamline [3]. First, an analog transition of $^{18}\text{O} \rightarrow ^{18}\text{Ne}$ (DIAS) will be measured with the S-2S spectrometer at the K1.8 beamline, which is the scope of this Letter of Intent. Analog transitions is expected to have an order of magnitude larger cross section than non-analog transitions, inferred from Ref. [7]. In addition, a feasibility study for the $^{4}\text{He}(\pi^{-},\pi^{+})$ reaction in search of tetraneutron will be carried out with the same experimental setup. It will provide important inputs for expanding the investigation with a much higher beam intensity at the HIHR beamline [3].

Double Isobaric Analog State.

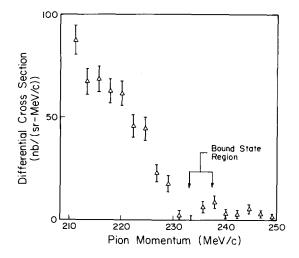


FIG. 2. π^+ momentum distribution for the ${}^4{\rm He}(\pi^-,\pi^+)$ reaction with the incident energy of 165 MeV. Taken from Ref. [8].

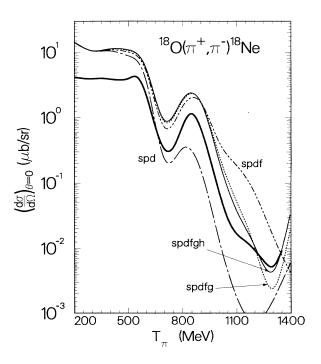


FIG. 3. Theoretical calculation of differential cross section of an analog $^{18}\text{O}(\pi^+,\pi^-)^{18}\text{Ne}\,(\text{DIAS})$ transition as a function of the pion kinetic energy. The bold line is the result with the partial wave up to l=5 and isovector polarization included. Taken from Ref. [4].

II. $^{18}\mathrm{O}(\pi^+,\pi^-)$ REACTION

Figure 3 shows the energy dependence of the differential cross section for the analog transition of interest, i.e. the $^{18}\text{O}(\pi^+,\pi^-)^{18}\text{Ne}$ (DIAS) reaction, calculated by Oset and Strottman [4]. We will investigate the differential cross section in the vicinity of $T_{\pi}=850\,\text{MeV}$, where it is supposed to be considerably large reflecting the πN amplitude.

The missing-mass spectra for low incident energies are available, as shown in Figs. 4 and 5. A prominent peak of the ground state (DIAS) is seen in each spectrum, while the first excited 2⁺ state at 1.88 MeV is visible only in Fig. 4 because of a worse missing-mass resolution in the latter experiment.

As a target, we will use $^{18}\text{O-enriched}$ water, which is commercially available as the precursor for $^{18}\text{F-FDG}$ (Fludeoxyglucose) to be used in FDG-PET (positron emission tomography). Assuming 10^7 π^+ 's per spill impinge on a $2\,\mathrm{g/cm^2}$ water target, the yield of the ground state will be approximately 4×10^2 counts per day. Therefore, energy scan around $850\,\mathrm{MeV}$ will be possible in one week. It will help to determine an optimum beam energy for the

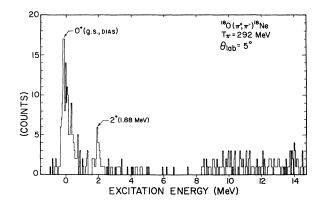


FIG. 4. Missing-mass spectrum of $^{18}\text{O}(\pi^+,\pi^-)$ reaction at $T_{\pi}=292\,\text{MeV}$ and $\theta_{\pi^-}=5^{\circ}$. Taken from Ref. [9].

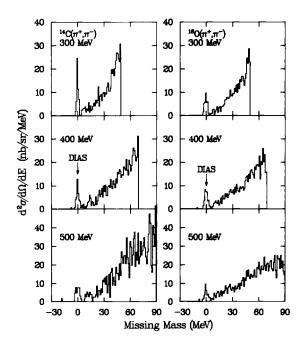


FIG. 5. Missing-mass spectrum of $^{14}\text{C}(\pi^+,\pi^-)$ (left) $^{18}\text{O}(\pi^+,\pi^-)$ (right) reaction at $T_{\pi}=300$ –500 MeV and $\theta_{\pi^-}=5^{\circ}$. Taken from Ref. [10].

 ${}^{4}\mathrm{He}(\pi^{-},\pi^{+})$ reaction with the aid of theoretical calculations.

III. ${}^{4}\text{He}(\pi^{-},\pi^{+})$ REACTION

Almost nothing is known for the pion DCX reaction on 4 He above the Δ resonance, except for old measurements with liquid-helium bubble chambers [11]. As the total cross section for the DCX reaction will be almost energy-independent, the double differential cross section into continuum, where four neutrons fall apart, near the 4n threshold (see Fig. 2) could be suppressed for a higher incident beam energy, because of increasing five-body phase space. Although a quantitative evaluation of the yield for a given beamtime is impractical at this moment, a measurement for a few days will provide information on the background level in searching for a possible peak structure of tetraneutron slightly

above the 4n threshold.

- [1] K. Kisamori et al., "Candidate Resonant Tetraneutron State Populated by the ⁴He(⁸He, ⁸Be) Reaction," Phys. Rev. Lett. **116**, 052501 (2016).
- [2] E. Hiyama, R. Lazauskas, J. Carbonell, and M. Kamimura, "Possibility of generating a 4-neutron resonance with a T=3/2isospin 3-neutron force," Phys. Rev. C 93, 044004 (2016).
- [3] H. Fujioka et al., "Search for tetraneutron by pion double charge exchange reaction on ⁴He," Letter of Intent for J-PARC 50 GeV Synchrotron (2016).
- [4] E. Oset and D. Strottman, "High-energy pion-induced double charge exchange and isovector renormalization," Phys. Rev. Lett. **70**, 146 (1993).
- [5] H. Clement, "Pionic charge exchange in nuclei," Prog. Part. Nucl. Phys. 29, 175 (1992).

- [6] M. B. Johnson and C. L. Morris, "Pion double charge exchange in nuclei," Annu. Rev. Nucl. Part. Sci. 43, 165 (1993).
 [7] D. P. Beatty et al., "Pion double charge exchange on ¹⁶O at T_π = 300–500 MeV," Phys. Rev. C 48, 1428 (1993).
 [8] J. E. Ungar et al., "Search for the tetraneutron by the double-charge-exchange of negative pions," Phy. Lett. B144, 333
- [9] S. J. Greene et al., "Systematics in pion double charge exchange," Phys. Rev. C 25, 927 (1982).
- [10] A. L. Williams et al., "Pion double charge exchange above the $\Delta(1232)$ resonance," Phys. Lett. **B216**, 11 (1989).
- [11] J. B. Jeanneret, M. Bogdanski, and E. Jeannet, "Double charge exchange and one-pion production in π^{+4} He collisions at $1.7 \,\mathrm{GeV}/c$," Nucl. Phys. **A350**, 345 (1980).