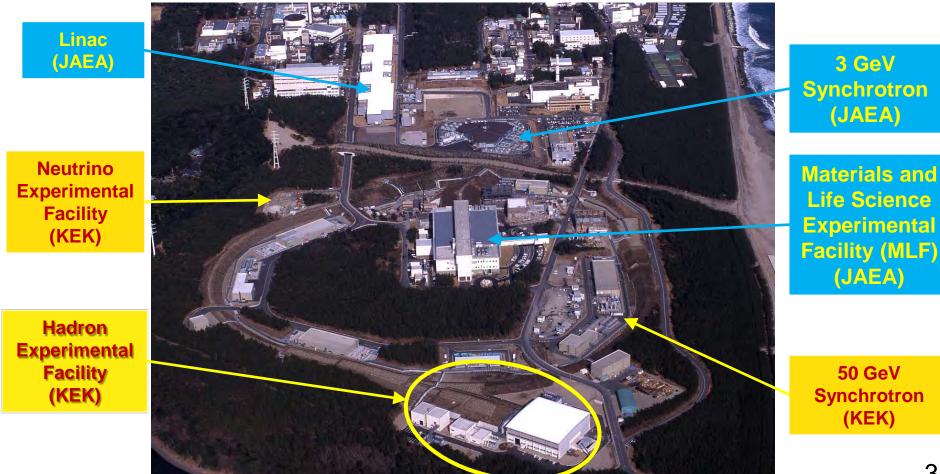





#### The Radioactive Material Leak Accident at the Hadron Experimental Facility of J-PARC June 21, 2013 First External Expert Panel


J-PARC Center Naohito Saito

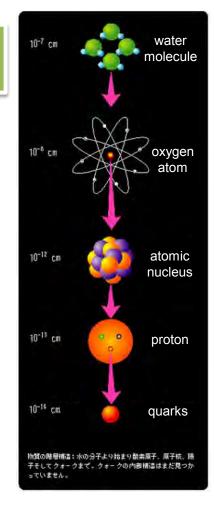
#### **Issues with respect to the Accident**

- Release of radioactive material to the outside of the radiation controlled area and to the environment outside of the Hadron experimental hall (HD hall)
- ② Delays in reporting to the relevant authorities, the local communities and the media
- ③ Internal radiation exposure on workers who inhaled contaminated air in the HD hall
- ④ Failure in timely disclosure of information

# What is J-PARC?

- Jointly built and operated by Japan Atomic Energy Agency (JAEA) and High Energy Accelerator Research Organization (KEK)
- Opened for researchers in the world to study a wide range of research fields from the origin of the universe to the development of new medicine




## **Hadron Experimental Facility**

A research facility for elementary particle and nuclear physics

- to investigate the fundamental components of matter
- to explore how they interact and constitute matter

Construction began in 2004 and was completed in January 2009. After commissioning, the users experiments started in January 2010.





#### Hadron Experimental Hall:

The building is 56 m long, 60 m wide, 16 m roof height with 6 m deep semibasement structure to accommodate experimental instruments.

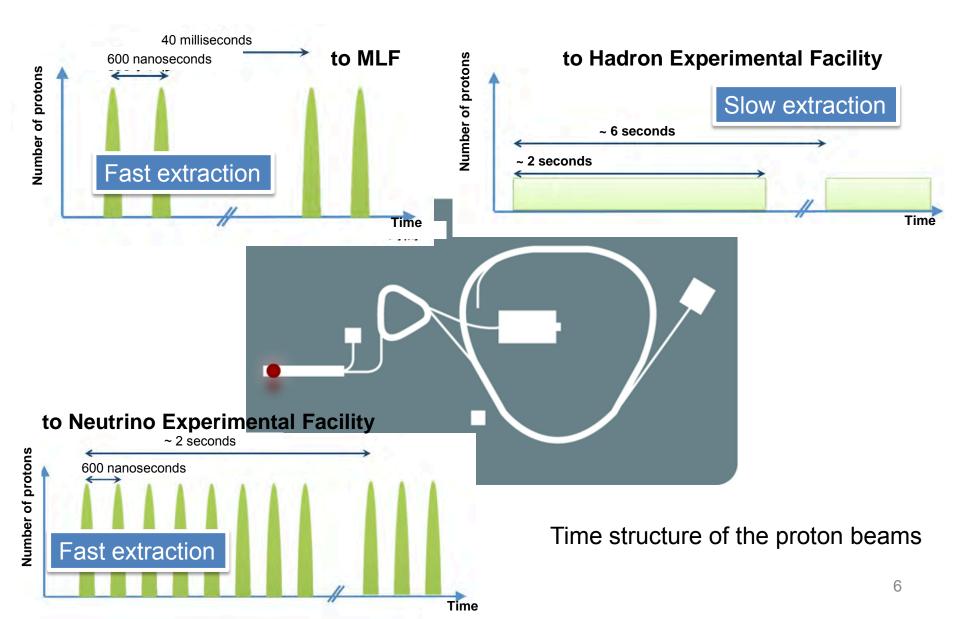
#### Hadron Experimental Facility:

It consists of the Hadron experimental hall and associated machine and power supply buildings, etc.

# **Outline of the Accident**

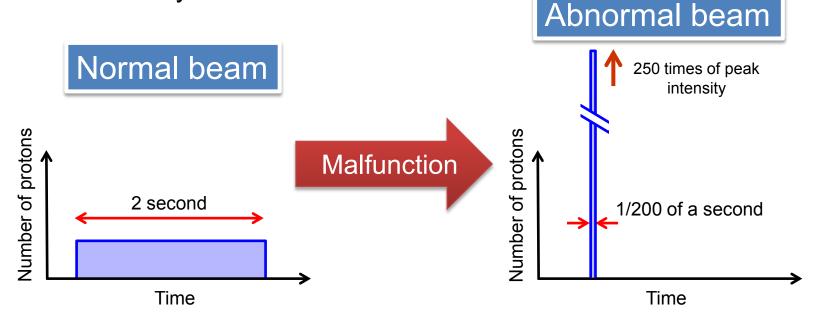
Proton beam

#### 11:55 on May 23


- An abnormal proton beam was injected to the gold target.
- The target heated up to a extraordinarily high temperature.
- Radioactive material was released from the target.
- The radioactive material was leaked into the HD hall.
  - $\rightarrow$  Workers were exposed to radiation.
- The radioactive material was released to the outside of the radiation controlled area and to the environment outside of the HD hall.

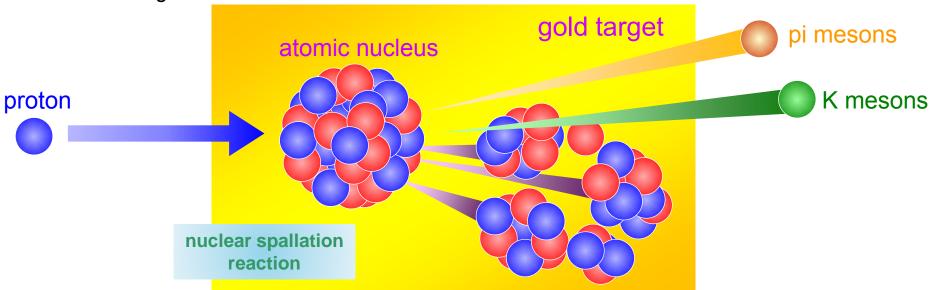
Proton beam

6


cm

#### **J-PARC Accelerators and Beam Extractions**

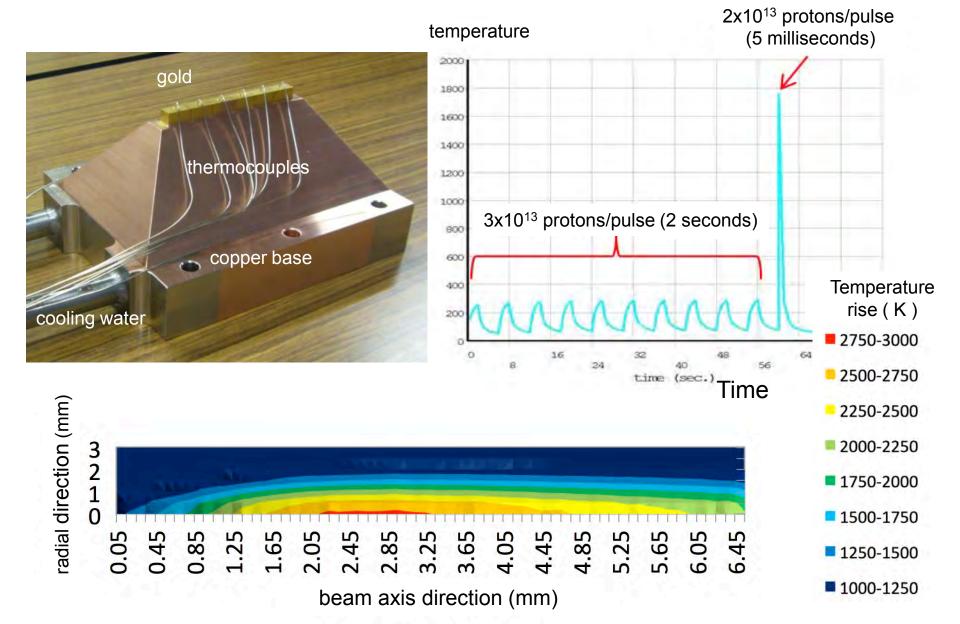



## **Abnormal Beam**

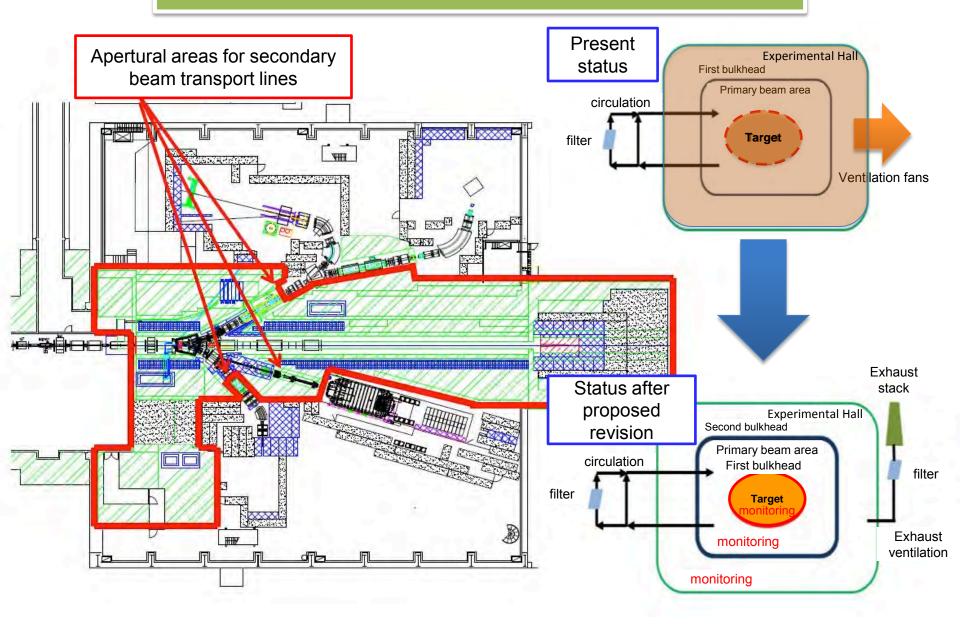
- At around 11:55 on May 23, the power supply system of a special magnet in the 50 GeV Synchrotron malfunctioned.
  - $\rightarrow$  2x10<sup>13</sup> protons were extracted in a very short period of 5 milliseconds, while in normal operation 3x10<sup>13</sup> protons should have been slowly extracted over 2 seconds.



# Purpose of the Gold Target


- The target, when bombarded by high-energy protons, produces secondary particles (mesons), which then will be used for research
  - Radioactive material is produced by nuclear spallation reactions.
  - In normal operation the radioactive material stays in the gold target.
  - When the proton beam operation is stopped, nuclear spallation reactions stop and no new radioactive material is produced. Radioactive material decays within the target.




Gold, unlike uranium, is not a radioactive material.

- $\rightarrow$  No nuclear chain reaction occurs.
- → However radiations come out from radioactive material produced in nuclear spallation reactions induced by the proton beam in the gold target.

#### **Target Temperature (Simulation Results)**



## Hadron Experimental Hall



## **Chronological Sequence of Events**

#### May 23, 2013

- 11:55 Delivery of proton beam from 50 GeV Synchrotron (MR) was halted by Machine Protection System (MPS).
- 12:08 MPS was reset following the regular resetting procedure after discussing with relevant people and delivery of proton beam for users' experiments was resumed.
- 13:30 Increase in radiation dose rate of an area monitor in the HD hall was acknowledged. The maximum value of 4 µSv/h is ten-fold of the normal value.
- 15:15 Ventilation fans were turned on. Further decrease in ambient dose rate was acknowledged.
- 17:00 Radiation survey of the HD hall found areas with high dose rate were localized.
- 17:30 Ventilation fans were turned on to reduce airborne radiation dose rate in the HD hall.
- 23:30 Completed evacuation and full-body radiation surveys of all workers in the radiation controlled area. Access to the HD Facility was restricted.

#### May 24, 2013

- 10:00 Members on the right held a meeting to discuss the situation. It was not considered this incident to be one for escalated reporting.
- 17:30 J-PARC Center received inquiry from Nuclear Fuel Engineering Laboratories concerning increased radiation levels recorded by their monitoring posts
- 18:00 Data logs of gamma-ray area monitors on the boundaries of the controlled area of the HD Facility were examined. Found increased radiation levels at around15:00 and 17:30 on May 23. Found that the increased dose rates coincide with the operations of ventilation fans in the HD hall.
- 21:10 Reported to an emergency post of the Nuclear Science Research Institute. Response headquarters was established.
- 22:40 As required by law, the first report to Nuclear Regulation Authority was transmitted by facsimile transmission.
- 22:40 As required under the terms of relevant agreements, the first report was faxed to Ibaraki Prefecture, Tokai Village and other authorities.

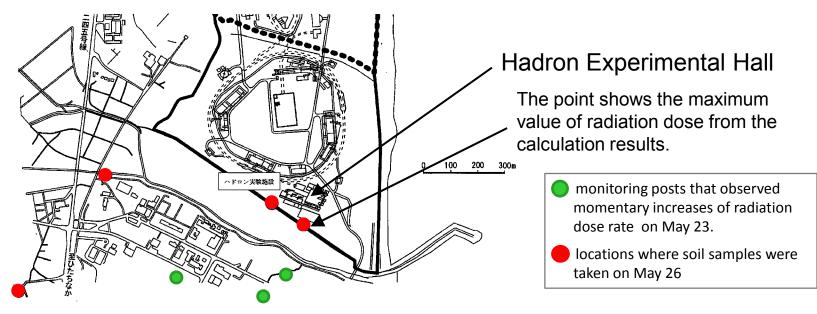
#### May 25, 2013

• 01:00 Found out that the maximum total exposure dose of the workers in the HD hall was 1.7 mSv.

#### 12

#### Effects on the Environment 1/2

#### Evaluations based on measurements:


- Increases of the radiation dose rates at monitoring stations of Nuclear Fuel Cycle Engineering Laboratories
- 2. Nuclides and radioactivities found in the airborne sample from the HD hall
- Direction and velocity of the winds at the time of release of radioactive material on May 23
- Two kinds of calculation methods used in estimations:
  - 1. Analytical method based on diffusion equations for radioactive material
  - 2. The WSPEEDI-II code

| nuclei             | half life  | radioactivities<br>(Bq) |  |
|--------------------|------------|-------------------------|--|
| <sup>43</sup> K    | 22.3 hours | 64.0                    |  |
| <sup>24</sup> Na   | 15.0 hours | 63.5                    |  |
| <sup>199m</sup> Hg | 42.6 min.  | 61.0                    |  |
| <sup>197</sup> Hg  | 64.9 hours | 39.5                    |  |
| <sup>76</sup> Kr   | 14.8 hours | 32.4                    |  |
| 131                | 8.02 days  | 28.6                    |  |
| <sup>82</sup> Br   | 35.3 hours | 19.5                    |  |
| <sup>195m</sup> Hg | 41.6 hours | 18.4                    |  |
| 123                | 13.3 hours | 17.2                    |  |
| <sup>95</sup> Nb   | 35.0 days  | 9.10                    |  |
| total amount       |            | 353                     |  |

Radioactive material in the 500 ml airborne sample collected from the Hadron experimental hall.

# Effects on the Environment 2/2

- The released radioactive material distributed within a narrow area of the west from the HD hall.
- The maximum integrated radiation dose at the site boundary is estimated to be 0.29 µSv at a location close to the HD hall.



Nuclear Fuel Cycle Engineering Laboratories

- Examination of soil samples from four locations.
  - $\rightarrow$  No radioactive material originating from the accident was detected at any of these locations.

# **Delays in Reporting and Announcing**

#### [May 23]

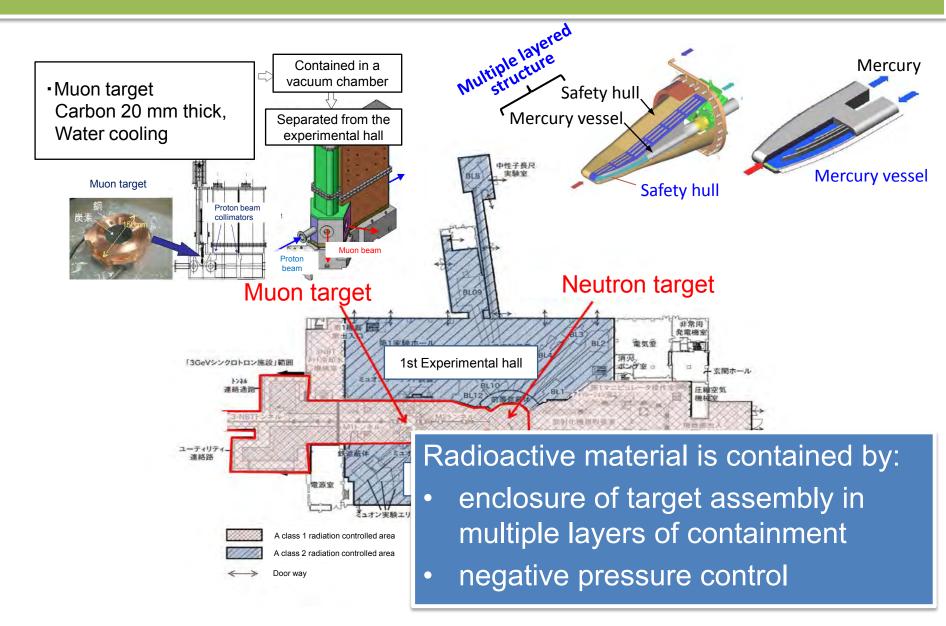
Our investigation indicates the following:

- A part of the gold target was damaged. Radioactive material leaked into the HD hall and contaminated the floor, etc.
- Workers in the HD hall may were exposed to internal radiation.
  - ← The leaders considered that contaminations were limited to a radiation controlled area and the exposure dose was below what was expected in normal operation. Hence they considered that this incident would not have to be reported as an accident.

#### [May 24]

Small increases of the dose rates were found at around 15:00 and around 17:30 on May 23, in coincidence with the operations of ventilation fans on that day.

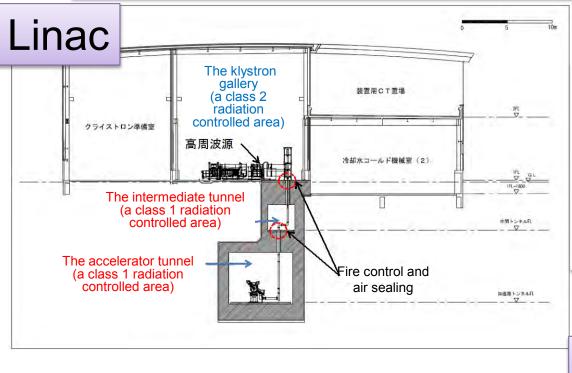
→ The leaders determined that radioactive material had leaked to the area outside the radiation controlled area and they reported to an emergency post of Nuclear Science Research Institute.


## **Radiation Exposure**

Measurement on internal and external radiation exposure doses of all the persons who entered the radiation controlled area of the HD Facility after the accident:

- Total number of personnel: 102
- Number of personnel with detectable dose: 34
   Note: All are registered radiation workers. Individual doses are in the range of 0.1–1.7 mSv.
- Number of personnel with no detectable dose: 66
   The remaining two, who were from overseas, had their whole body counter measurements at home later, and have been found to have no detectable dose.

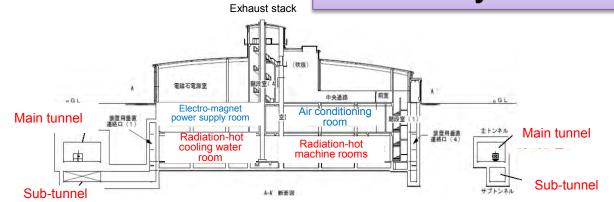
# Other Facilities at J-PARC


#### Materials and Life Science Experimental Facility

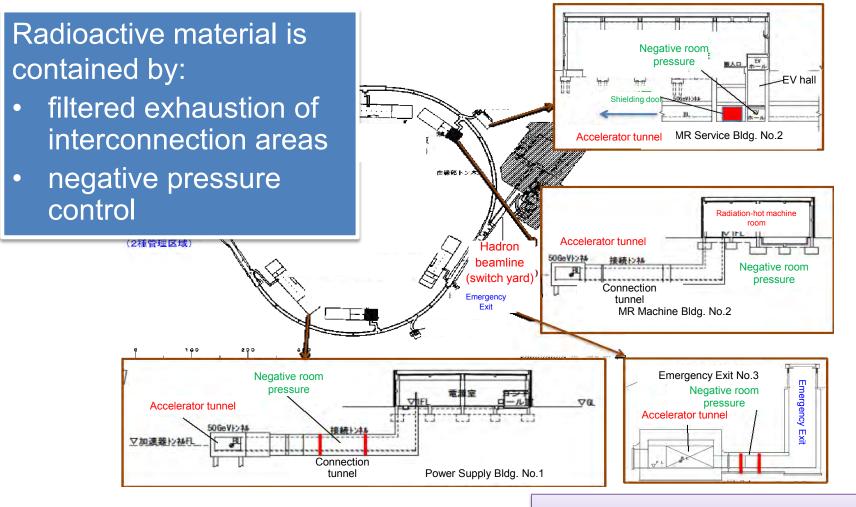


## **Neutrino Experimental Facility**




#### **Accelerator Facility Complex**




Radioactive material is contained by:

- two-layered containment
- filtered exhaustion of interconnection areas





# **Accelerator Facility Complex**



50 GeV Synchrotron

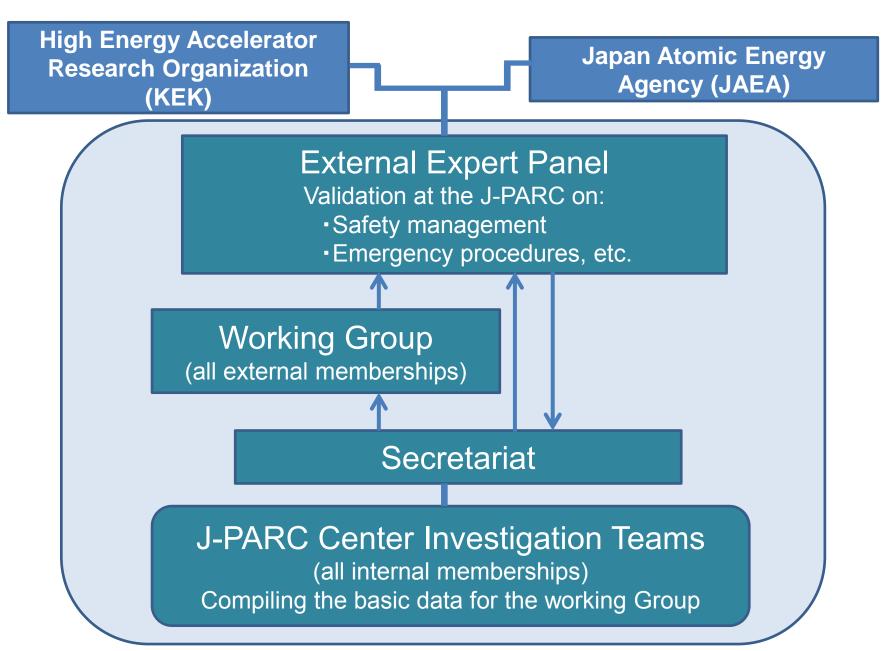
# **Plans for the Near Future**

- Continued investigation of facilities and instruments
  - Target area of the HD Facility
  - Power supply unit which experienced the malfunction causing the abnormal beam extraction

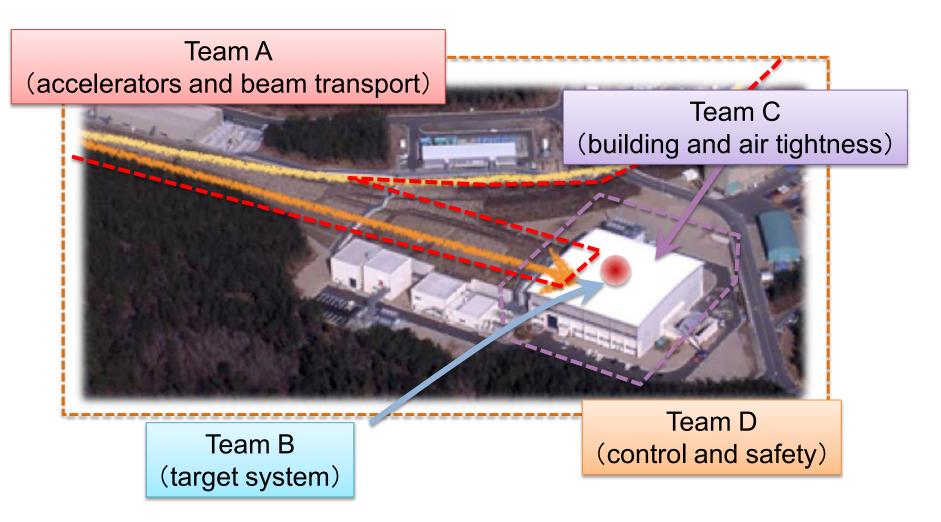
Determination of the causes and development of preventive measures

- Evaluation of the total amount of radioactive material released from the HD Hall to the environment
  - Detailed analysis of the air sample which was collected at the HD hall
  - Simulation to reproduce the radiation dose rates observed in the HD Facility

#### Evaluation of the effects on the environment


The First Meeting of External Expert Panel to Review the Radioactive Material Leak Accident at the Hadron Experimental Facility of J-PARC

#### External Expert Panel: Viewpoints of Evaluation


- Evaluation of overall response to the accident, including the organizational framework
  - Investigation of causes of the accident, analysis of contamination, radiation exposure and environmental impact
- ☐ Evaluation of countermeasures
  - Revalidation of safety management system including developing preventive measures against recurrence of similar accidents and review of radiation controlled areas in the J-PARC facilities
- □ Organization of J-PARC
  - Relationships between the accident and the organization and operation of the J-PARC center that is jointly managed by KEK and JAEA

 $\Box$  Efforts to promote the safety culture, etc.

#### **Organization of the External Expert Panel**



## **Investigation Teams**



# **Examination of Timeline of Incidents**

#### Timeline of incidents, judgements and actions

Serial numbers in red are listed events in the "Chronological Sequneceof Events" of the 1st Official Report .

| 1                            |         | Incident         |        |                               | Incident                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                            |                                      |  |
|------------------------------|---------|------------------|--------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--|
| Timeline<br>serial<br>number |         | B<br>e<br>a<br>m | Time   | Source of<br>infor-<br>mation | ltem<br>(What happened / What was done)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Who took action:                                                                                                                                                           | Who made a judgement on what and why |  |
|                              | Date    |                  |        |                               | Hadron operation was scheduled for 24 hours this day. Three<br>out of the four beamlines at the HD experimental hall was<br>conducting beam experiments, while the remaining one was<br>preparing the experimental setup.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                            |                                      |  |
| 1                            | 5/23/13 |                  | ~11:55 | zlog<br>HDlog                 | MPS set in to stop beam operation<br>(Detected signals)<br>- MR-EQ "over voltage", "tracking error"<br>- MR-RQ "over current"<br>- MR-BLM<br>- HD experimental facility BLM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                            |                                      |  |
| 2                            |         |                  | ~12:06 | i zlog<br>Hearing             | Acc. Shift Leader asked for Mag. PS's opinion concerning the EQ anomaly. The Magnet power-supply staff immediately checked the control screen of EQ at CCR. While this was the first occurrence of a tracking error on EQ, the MPS status of the PS was able to reset with the standard procedure. EQ overvoltage is a relatively familiar status, and usually it can be reset       Acc. Shift Leader       Magnet power-supply staff considered that the PS return to its normal status.         Magnet power-supply staff reset the MPS status of overvoltage" is a relatively familiar error condition, an it can be restarted without problems. This time, the m restarted without problems, too.       Incident of abnormal beam         Incident of abnormal beam       Damage of the gold target? |                                                                                                                                                                            |                                      |  |
| 3                            |         |                  | ~12:06 | i zlog<br>Hearing             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                            |                                      |  |
| 4                            |         |                  | ~12:06 | zlog<br>Hearing               | Acc. Shift Leader reset the MPS status of MR-BLM on t<br>consideration that it was due to miss-firing of the fast                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | eader reset the MPS status of MR-BLM on t<br>on that it was due to miss-firing of the fast<br>kicker, since the BL-MPS was associated with Release of radioactive material |                                      |  |
| 5                            |         |                  | ~12:06 | i zlog<br>HDlog<br>Hearing    | Vacuum in the proton beam line, and reported them to<br>Manager of Radiation Generator of HD , who were in<br>After consultation, HD Shift Leader reset the BLM MPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | suspending accelerator operation, and                                                                                                                                      |                                      |  |

# Summary

- Overview of the accident
  - occurrence, hall contamination, exposure, leakage of radioactive material to the outside of the radiation controlled area and responses after the accident
- Status of the other facilities
- Status of the investigation
  - hardware aspects (facilities and instruments)
  - software aspects (safety management system)
  - the Working Group, secretariat and investigation teams